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ABSTRACT 

A new derivation is presented for the least squares solution of the design problem of 2-D FIR filters by 

minimizing the Frobenius norm of the difference between the matrices of the ideal and actual frequency 

responses sampled at the points of a frequency grid. The mathematical approach is based on the singular 

value decomposition of two complex transformation matrices. Interestingly, the designed filter is proved to 

be zero-phase if the ideal filter is so without assuming any kind of symmetry. 

 

I. INTRODUCTION 

The least squares technique has been applied for designing 2-D FIR filters with quadrantally symmetric 

or antisymmetric frequency response [1] and has recently been extended to filters with only a centro-

symmetric frequency response [2]. A new treatment of the special case of quadrantal symmetry or 

antisymmetry based on a singular value decomposition has been briefly presented in [3]. All the work 

reported in [1-3] is based on the assumption of having a real impulse response where the linear-phase 

condition implies a centro-symmetric frequency response amplitude.  

The main objective of this paper is to present a new derivation for the least squares design problem of 2-

D FIR filters which is based on the singular value decomposition of some transformation matrices rather 

than the classical technique based on setting the partial derivatives to zero. Moreover; the treatment will be 

for the general case where there are no assumptions of a centro-symmetric frequency response or even a real 

impulse response. 

 

II. PROBLEM FORMULATION 

 The frequency response of a two-dimensional FIR filter is : 
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The impulse response has a rectangular region of support centered at the origin and no assumptions are 

implied of quadrantal symmetry, quadrantal antisymmetry or centro-symmetry, i.e., H( , )ω ω1 2  is not 

generally zero phase . Moreover h(n1,n2) is not restricted to be real. The above equation can be compactly 

expressed as3 : 

H f Ag( , ) ( ) ( )ω ω ω ω1 2 1 2= +  (2) 

where A is the (2N1+1) x (2N2+1) impulse response matrix (the matrix of filter coefficients) : 
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and f(ω1) and g(ω2) are respectively (2N1 + 1)- and (2N2 + 1)-dimensional vectors defined by : 
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In the above equation u(ω1) and v(ω2) are respectively N1- and N2-dimensional vectors defined by4 : 
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and J is the contra-identity matrix of the proper order defined by : 
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Discretizing the continuous frequencies ω1 and ω2 by taking 2M1 and 2M2 samples of them respectively, we get : 

( ) ( )ω π π
i mi Mi

mi= − + −1    , mi = 1 , ... , 2Mi    ,    i = 1, 2 . (7) 

Sampling the frequency response H(ω1,ω2) at those discrete frequencies we get : 
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which can be expressed using (2) as : 

Hm m fm Agm1 2 1 2, = +  (9) 

where the vectors fm1 and gm2 are obtained by sampling the vectors f(ω1) and g(ω2) of (4) at the discrete 

frequencies of (7) . 

Let H be the 2M1 x 2M2 matrix of the discretized frequency response : 
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3The superscripts +, *, T denote the complex conjugate transpose, the complex conjugate and the transpose 
respectively.  
4Notice that the exponents of the elements of vectors u(ω1) and v(ω2) are positive and negative respectively. 
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which can be expressed - using (9) - as : 

H F AG= +  (11) 

where F and G are respectively the (2N1 + 1) x 2M1 and (2N2 + 1) x 2M2 transformation matrices defined 

by : 
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Using (4), it is possible to express the above 2 matrices as : 
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where the N1 x 2M1 and N2 x 2M2 matrices U and V are respectively defined by : 
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and µ is the summing vector of appropriate dimension defined by : 

( )µ = 1 1 1... T   . (16) 

From (7) it can be shown that : 
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and consequently it follows from (5) that : 
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Therefore the matrices U and V of (15) can be expressed as : 
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where the N1 x (M1 - 1) and N2 x (M2 - 1) matrices Ua and Va are defined by : 
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Va v v M=
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From (5) and (7) it can be shown that : 
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uM1 1+ = µ   , (22a) 

vM2 1+ = µ   . (22b) 

Let H 0  be the matrix of the ideal frequency response at the same discrete frequencies of (7) and let E be 

the Frobenius norm [4] of the matrix difference H H− 0  : 
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The impulse response matrix A of (11) will be derived next section by minimizing the above error 

criterion. 

 

III. Singular Value Decomposition Derivation 

It will be assumed that the number of frequency samples in each direction is greater than or equal to the 

length of the impulse response in that direction , i.e. 2Mi ≥ (2Ni + 1) for i = 1,2 . 

Under the assumption that 2Mi ≥ (2Ni + 1) for i = 1,2 the matrices F and G of (12) and (13) can be 

proved to have full row rank. Therefore the singular value decomposition of F and G can be expressed as [4] 

: 

( )F PF F QF= ∑ +0  (24) 

( )G PG G QG= ∑ +0  (25) 

where PF  , QF  , PG  and QG  are unitary matrices of order (2N1+1), 2M1, (2N2+1) and 2M2 respectively; 

and ∑F  and ∑G  are real diagonal matrices of order (2N1+1) and (2N2+1) of the singular values of the 

matrices F and G respectively. The matrices ∑F  and ∑G  are nonsingular since the matrices F and G have 

full row rank. 

In an attempt for finding the matrices PF  , QF  and ∑F  of (24), the following 2M1-dimensional row 

vector will first be defined : 
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Using (26) and (7) for the discrete frequencies, it is straightforward to show that s(n) has the following 

properties : 
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From (26) and (7) it is possible to show that : 
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Since the integers n1 and n2 lie in the range 0 ≤ n1 , n2 ≤ 2M1-1 , the above equation reduces to : 

s n s n M n n( ) ( ) ( )1 2 2 1 1 2
+ = −δ  (31) 

where δ(n) is the Kronecker delta function. It follows from (29) and (31) that : 

FF M I N
+ = +2 1 2 1 1( )  . (32) 

Since from (24) one gets : 

FF PF F PF
+ = +Σ2  (33) 

the above two equations reveal that : 

∑ = +F M I N2 1 2 1 1( )    , (34) 

PF I N= +( )2 1 1    . (35) 

Substituting (34) and (35) into (24) to obtain : 
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( )F M I QFN= +
+2 1 02 1 1( )  (36) 

and partitioning QF  as : 

( )QF Q QF F= 1 2  (37) 

one gets : 

 Q
M

FF1
1

2 1
= +  . (38) 

In order to find the remaining (2M1 - 2N1 - 1) columns of matrix QF  , the following square matrix of 

order 2M1 is first formed : 
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where the rows of the matrix F2  are given by the row vector s(n) of (26) for n = N1+1, N1+2 , ... , 2M1 - N1 

- 1 , i.e. the rows of F2  and of matrix F of (29) are given by s(n), n = 0, 1 , ... , 2M1 - 1 . Consequently the 

orthogonality condition (31) implies that : 

TT M I M
+ = 2 1 2 1

 (40) 

which means that the matrix 
1

2 1M
T  is unitary. Equations (37) - (40) imply that matrix QF  is given by : 
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Therefore a complete singular value decomposition of the transformation matrix F is given by Eqs (36) and 

(41). By the same token the singular value decomposition of matrix G of (14) is given by : 
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with n = N2 + 1 , N2 + 2 , ... , 2M2 - N2 - 1 . 
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Utilizing the singular value decomposition of (36) and (42), the frequency response matrix H  of (11) 

can be expressed as : 
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Since the Frobenius norm is invariant under pre- or postmultiplication by a unitary matrix, the error 

criterion of (23) can be expressed using the above equation as : 
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Partitioning the second matrix appearing in the above equation conformably with the first one to get : 
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Since the dependence of E on matrix A is restricted to the submatrix in the (1,1) location of the matrix 

appearing on the R.H.S. of the above equation, and calling to remembrance the definition of the Frobenius 

norm, one concludes that the minimum value of E is attained at : 
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By definition (48) of B11 , one gets : 
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and utilizing (41), (39), (43) and (44) one obtains : 

A
M M

F H G= +1
4 1 2

0  . (52) 

This is the main result of this paper ; namely the above matrix A is the unique optimal solution in the 

least squares sense of the approximation problem inherent in the design of 2-D FIR filters. The 

corresponding frequency response obtained by substituting (52) into (2) is : 
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From (4) and (14), one obtains : 
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5 The negative sign is used for the exponents of the elements of vector t(n) in (45) in order to be consistent with vector 
v(ω2) defined in (5). 
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Therefore the row vector ( )f F+ ω 1  is real and the same holds for the column vector ( )G g+ ω 2  which 

implies - based on (53) - that the frequency response ( )H ω ω1 2,  of the designed filter will be zero-phase 

for a zero-phase ideal frequency response H 0 . Any wonder about this interesting result of getting a zero-

phase frequency response in the general case of no centro-symmetry should be removed by remembering 

that the impulse response h n n( , )1 2  and consequently matrix A have not been restricted to be real. 

It should be noticed that the application of (52) does not require the singular value decomposition (svd) 

of any matrix. The svd has been needed only for the derivation.  

 

IV. SIMULATION RESULTS 

A general-shaped frequency response is shown in Fig. 1 where the right triangular passband (PB) lies 

completely in the first quadrant and defined by the 3 vertices (a1,b1), (a2,b2) and (a2,b1) . The transition 

band (TB) has a fixed width c and can overlap with the second and fourth quadrant. The phase of this 

frequency response is specified to be zero so that the resulting filter to be designed by the method derived in 

Section III will also be zero-phase. Figure 2 depicts the ideal frequency response which has a unity 

magnitude over the passband, a zero magnitude over the stopband (SB), and a linearly varying magnitude 

over the transition band. The following values are used for the parameters : a1 = 0.6π , b1 = 0.05π , a2 = 0 , 

b2 = 0.5π and c = 0.1π . The frequency response is sampled over a grid of 2M1 x 2M2 points where M1 = 

M2 = 40 . The support of the impulse response of the filter which has (2N1+1) x (2N2+1) points will be 

assumed to be square , i.e. N1 = N2 = N . Table 1 summarizes the simulation results for 3 designed filters 

with N = 14, 22 and 39 . It provides the maximum absolute error in the passband, the maximum absolute 

error in the stopband, and the sum of the squares of the errors of the frequency response at the same points 

of the grid used for specifying the ideal frequency response, i.e. the square of the minimum value of criterion 

E of (23) . The table also lists the CPU time required for computing both the impulse response matrix A and 

the frequency response samples of the designed filter. Figures 3 and 4 portrays both the perspective and 

contour plots of the frequency response of the designed filter for the case of N = 22 .  

V. CONCLUSION 

A new derivation is presented for the least squares solution of the design problem of 2-D FIR filters in 

the discrete frequency domain for the general case of a noncentro-symmetric frequency response and 

complex impulse response. The derivation is based on the singular value decomposition of two complex 

transformation matrices. Interestingly the application of the final result does not require the singular value 

decomposition of any matrix. Moreover it has been proved that the designed filter will be zero-phase if the 

ideal filter is so despite being noncentro-symmetric. This surprising result has been attained by allowing the 

impulse response to be complex. 
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Figure Captions 
 

Fig. 1 : Frequency response specifications. 

Fig. 2 : The ideal frequency response . 

Fig. 3 : A perspective plot of the actual frequency response for N = 22. 

Fig. 4 : A contour plot of the actual frequency response for N = 22. 

 

Table Caption 

 
Table 1 : Simulation Results 
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Table 1 : Simulation Results 

 

N Max error  

in passband 

Max error  

in stopband 

   Emin
2  Computer 

CPU time  

in seconds 

14 0.0997 0.1155 1.0967 2.86 

22 0.0769 0.0694 0.4632 4.89 

39 0.0019 0.0049 0.0051 11.8 
 


