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ABSTRACT 

 

 A design technique is presented for two-dimensional linear phase lowpass FIR filters based 

on a constrained minimization formulation. The minimization criterion is a convex 

combination of two criteria representing measures of the error between the actual and ideal 

frequency responses in the pass and stop bands. The constraints can for example represent 

flatness conditions at the origin. The result is applied to the case of a circularly symmetric  

lowpass filter and closed-form expressions are derived for the elements of the relevant matrices 

which appear in the minimization criterion so that numerical integration can be avoided. 

 

I. INTRODUCTION 

 

 Recently 2-D FIR eigenfilters were designed by minimizing a quadratic error criterion 

defined by the integral of the square of the difference between the frequency response of the 

designed filter and a scaled version of the ideal frequency response [1]. The scaling factor was 

introduced in order to get a quadratic form as an essential requirement of the eigenfilter 

formulation. The technique proposed here is distinct from that of [1] in two respects. First, a 

more meaningful minimization criterion is used where no scaling of the ideal frequency 

response is employed. Second, instead of the single quadratic normalization constraint required 

by the eigenfilter formulation of [1], a set of linear constraints will be imposed which can for 

example represent flatness conditions of the frequency response at the origin of the 2D 

frequency plane. In the case of a circularly symmetric lowpass filter, closed-form expressions 

will be derived for the elements of the pertinent matrices so that numerical integration can be 

avoided. 

 The frequency response of a 2-D FIR filter having a first quadrant causality and a real 

impulse response which is symmetric about the center of its support can be expressed as : 
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where Ha(ω1,ω2) is given below for the case of odd N1 and N2 being treated in this paper : 
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The amplitude function Ha(ω1,ω2) can be compactly expressed as1 : 
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and v(ω2) is analogously defined with ω1 and M1 respectively replaced by ω2 and M2 where :  

                                                 
1The superscript T denotes the transpose. 
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In Eq (3) the elements of the square matrix B are related to the coefficients a(n1,n2) of Eq (2) 

which in turn are related to the impulse response of the filter. 

 In order to be able to express the amplitude function Ha(ω1,ω2) as an inner product of two 

vectors; one of them consisting of the filter coefficients, a vector x will be defined as a 

concatenation of the rows of matrix B and a vector s(ω1,ω2) will be defined as the Kronecker 

product of the vectors u(ω1) and v(ω2) : 
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Therefore Eq (3) can be rewritten as : 
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II. The Constrained Minimization Problem 

 

 The total mean squared error criterion is defined as [1] : 
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where Es and Ep are respectively mean squared error measures in the stop and pass domains Ω

s and Ωp defined by : 
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and an analogous expression holds for Ep with the subscript s replaced by p. In the above 

equation W ( , )ω ω
1 2

 is a positive weighting function and e(ω1,ω2) is the error between the 

actual frequency response Ha(ω1,ω2) and the desired one Hd(ω1,ω2) , i.e.,  

e H
a

H
d

( , ) ( , ) ( , )ω ω ω ω ω ω
1 2 1 2 1 2

= −    . (10) 

Let Hd(ω1,ω2) be unity in the passband and zero in the stopband; it can be shown that the error 

criterion (8) can be evaluated as :  
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 Let us impose a set of constraints - for example flatness constraints at the origin - on the 

frequency response of (7). This results in the following set of linear constraints :  

Cx K=  (18) 

where C is a rectangular matrix and K is a vector. 

 The vector x of filter coefficients appearing in (7) will be evaluated by solving the 

constrained optimization problem :  

Minimize E of (11) subject to Cx = K . 

 Using the Lagrange multipliers technique which has been applied to a related 1-D filter 

design problem [2], one gets the unique solution : 
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III. CIRCULARLY SYMMETRIC LOWPASS FILTER 

 

 Let ωp and ωs be respectively the edges of the pass and stop bands of H
d

( , )ω ω
1 2

 of a 

circularly symmetric lowpass filter. In order to evaluate vector x of (19), one should evaluate 

the matrices Ps and Pa and vector pb defined by (13)-(15). Taking the weight function to be 

unity everywhere, using (17) and (6), and integrating only over the first quadrant because of the 

circular symmetry, one gets : 
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Using (4), one can derive the following expressions for the inner integrals in (21), (23) and 

(24) and the single integrals in (22) : 
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Substituting (25) in (24), the r th element of vector p
b

 reduces to : 
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where the index r is related to the indices r1 and r2 by : 
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 In order to evaluate the integral in (29), the definition of the following function is 

introduced : 
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In the appendix , it will be proved that the integral in (31) has the closed-form expression : 
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where J1(x) is Bessel function of the first kind of order one. In the same Appendix it will be 

proved that (32) is also valid in the limiting cases of a = 0 or b = 0 , i.e. 
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Defining the function G(λ,a) as : 

G a F a( , ) ( , , )λ λ≡ 0  (35-a) 

and using (33-b) and (34-b), one gets : 

G a F a( , ) ( , , )λ λ= 0    . (35-b) 

Moreover in the extreme case of a = b = 0 , (31), (33) - (35) reduce to :  
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Similarly substitute (26) in (23) to obtain : 
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In order to evaluate the elements of matrix Ps
1

 of (21) by utilizing (27), three subcases arise : 

(a) For r1 ≠ c1 : 
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and using (31), one gets : 
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(b) For r1 = c1 , r1,c1 > 1 : 
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and using (31) and (35-b) , one gets : 
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where the function S(λ,a) has been defined by : 
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IV. AN ILLUSTRATIVE EXAMPLE 
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 A lowpass circular filter is designed using the results of the previous section to 

approximate an ideal filter with ωp = 0.5π and ωs = 0.6π rad. The support of the impulse 

response is such that N1 = N2 = 45. Figure 1 is the perspective plot of the frequency response 

of a filter designed using 25 constraints (24 flatness constraints at the origin and one 

normalization constraint) and α = 0.2  

 It should be mentioned that the IMSL routines were used for computing the vector x of 

(19). For a small number of constraints no numerical instability problems arose; however such 

problems are expected to arise for a large number of constraints . 

 

V. CONCLUSION 

 

 Circularly symmetric lowpass FIR filters have been designed using closed-form 

expressions derived based on a constrained optimization problem formulation. The 

minimization criterion represents a measure of the error between the ideal and actual frequency 

responses. The constraints can represent flatness conditions at the origin. 

 

APPENDIX  

 

Proof of Eq (32) : 

 

Changing the variable of integration in (31) according to : 
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one immediately obtains (32). 

 

Proof of Eq (33-b) : 

 

Changing the variable of integration in (33-a) according to (B1), one gets : 
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In order to evaluate this integral, one starts by the following formula [4] : 
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Proof of Eq(34-b) : 

 

Changing the variable of integration in (34-a) according to (B1), one gets : 
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Figure Captions 

Fig. 1 : A perspective plot of the frequency response of the designed filter for the case 

of α = 0.2 . 


