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Abstract 

 

 The generation of Hermite-Gaussian-like orthonormal eigenvectors of the discrete Fourier transform 
(DFT) matrix F is an essential step in the development of the discrete fractional Fourier transform (DFRFT). 
Most existing techniques depend on the generation of orthonormal eigenvectors of a nearly tridiagonal 
matrix S which commutes with matrix F. More sophisticated methods view the eigenvectors of S as only 
initial ones and use them for generating final ones which better approximate the Hermite-Gaussian functions 
employing a technique like the orthogonal procrustes algorithm (OPA). Here a direct technique for the 
collective (batch) evaluation of optimal Hermite-Gaussian-like eigenvectors of matrix F is contributed. It is 
a direct technique in the sense that it does not require the generation of initial eigenvectors to be used for 
computing the final superior ones. It is a batch method in the sense that it solves for the entire target modal 
matrix of F instead of the sequential generation of the eigenvectors. The simulation results show that the 
proposed method is faster than the OPA. 
 
Index Terms: DFT matrix, orthonormal eigenvectors, Hermite-Gaussian-like eigenvectors, constrained 
optimization, discrete fractional Fourier transform. 

 
 

I. INTRODUCTION 

 
 The emergence of the discrete fractional Fourier transform (DFRFT) has revived the interest in 

computing orthonormal eigenvectors of the discrete Fourier transform (DFT) matrix F since the 

orthonormality of those eigenvectors is an essential requirement for the index additivity property of the 

fractional transform. McClellan and Parks [1] elegantly derived the multiplicities of the eigenvalues of 

matrix F; however their proposed eigenvectors are not orthogonal and consequently cannot be taken as a 

basis for developing the DFRFT. Dickinson and Steiglitz [2] discovered a nearly tridiagonal matrix S which 

commutes with matrix F and consequently took its eigenvectors as those of F. Santhanam and McClellan [3] 

were the first to employ the eigendecomposition of matrix F for developing a definition of the DFRFT. 

Candan, Kutay and Ozaktas [4] discretized the second order differential equation satisfied by the Hermite-

Gaussian functions – which are the eigenfunctions of the continuous fractional Fourier transform (FRFT) – 

and showed that one period of the periodic solution of the resulting difference equation is an eigenvector of 

matrix S. This implies that the eigenvectors of matrix S are Hermite-Gaussian-like and consequently a 

DFRFT defined in terms of them will approximate its continuous counterpart, namely the FRFT. Pursuing it 
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further, Pei, Yeh and Tseng [5] viewed the eigenvectors of matrix3 S as only initial ones to be used for 

computing final superior eigenvectors in the sense of better approximating the Hermite-Gaussian functions. 

They employed the orthogonal procrustes algorithm (OPA) for the batch evaluation of the final 

eigenvectors. Pei et al. started their analysis by proving that vectors formed by rearranging samples of the 

Hermite-Gaussian functions are approximate eigenvectors of matrix F that correspond to its exact 

eigenvalues. Actually those approximate eigenvectors are quite desirable since they are samples of the 

Hermite-Gaussian functions and the ultimate goal is the generation of Hermite-Gaussian-like eigenvectors. 

Recently Hanna, Seif and Ahmed [6] computed initial orthonormal eigenvectors of F by the singular value 

decomposition (SVD) of the projection matrices of F on its eigenspaces. Moreover they proved that the final 

eigenvectors of F evaluated using the OPA are invariant under the change of the initial ones. 

 The main objective of this paper is the direct attack on the problem of deriving an optimal unitary modal 

matrix of matrix F in the sense of being the closest to the matrix whose columns are formed by sampling the 

Hermite-Gaussian functions. More specifically the squared Frobenius norm of the difference between the 

target matrix and the matrix of approximate desirable eigenvectors will be minimized subject to the 

constraint that the target matrix is a unitary modal matrix of F. The method is direct in the sense that it does 

not require the generation of initial eigenvectors as a prerequisite for computing the final optimal ones. The 

method is described as batch since it solves for the entire modal matrix of F rather than sequentially 

evaluates the eigenvectors. The proposed method will be termed the Direct Batch Evaluation by constrained 

Optimization Algorithm (DBEOA). 

 After introducing the required mathematical notations in section II, the constrained minimization problem 

is solved in section III apart from evaluating two matrices G and H of Lagrange multipliers. Matrix G is 

eliminated in section IV and matrix W – related to matrix H – is evaluated in section V. The algorithm is 

provided in section VI and some simulation results are presented in section VII. 

 

II. PRELIMINARY 

 

 Although the motivation behind this work is the development of Hermite-Gaussian-like eigenvectors of 

the DFT matrix, the results will be presented in a more general mathematical framework where F is assumed 

to be any unitary matrix of order N having distinct eigenvalues kλ  with algebraic multiplicities kr , 

Kk ,,1L= . Let kE  be the eigenspace pertaining to kλ , i.e. the subspace of the N-dimensional complex 

space NC  spanned by the eigenvectors of F  corresponding to the eigenvalue kλ . Since the unitarity of F 
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results in the orthogonality of the eigenspaces kE , Kk ,,1L=  [7], the problem of generating orthonormal 

eigenvectors for F decouples into K separate problems where in the kth problem one seeks orthonormal basis 

for kE . The unitarity of F implies that the geometric multiplicity of kλ  (which is the number of linearly 

independent eigenvectors corresponding to it) is equal to its algebraic multiplicity and consequently the 

dimension of kE  is kr  [8]. Let kU
)

 be the target optimal krN x  matrix whose columns are orthonormal 

basis of the eigenspace kE  and let kU  be the corresponding matrix whose columns are approximate (since 

they are not exact) but desirable (since they have a key feature such as being samples of the Hermite-

Gaussian functions) eigenvectors of F pertaining to the exact eigenvalue kλ . The descriptor desirable stems 

from the fact that the main goal is the generation of exact eigenvectors which are as close as possible to 

samples of the Hermite-Gaussian functions. It goes without saying that the columns of kU  are not basis of 

kE  since they are approximate eigenvectors. It will be assumed that the columns of kU  are linearly 

independent. The objective is to derive matrix kU
)

 such that it is the closest matrix (in some sense) to kU . 

 

III. BATCH EVALUATION BY CONSTRAINED OPTIMIZATION 

 

 Given matrix kU  find matrix kU
)

 that minimizes the squared Frobenius norm: 

2

FaJ kk UU
)

−=  (1) 

subject to the constraints 

( ) 0UIFA k =−≡
)

kλ  (2) 

and4 
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H
k =−≡
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. (3) 

Constraint (2) guarantees that the columns of kU
)

are eigenvectors of F  and constraint (3) guarantees their 

orthonormality. By virtue of the definition of the Frobenius norm, criterion (1) can be expressed as: 
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where ( ) tr  is the trace of a matrix and { } Real  denotes the real part. The above equation implies that 

minimizing aJ  w.r.t. kU
)

 is equivalent to maximizing the following criterion: 
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( ) ( )k
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Augmenting this real criterion by the two sets of constraints (2) and (3), one gets the following real 

augmented maximization criterion: 

( ) ( ) ( ) ( )µBHµµBHµµAGµµAGµ **** oooo TTTT
bJJ −−−−=  (6) 

where G  and H  are matrices of Lagrange multipliers, the symbol o  denotes the Schur product of matrices 

(see its definition in [9, Appendix]), and µ  is the summing vector defined by 

( )T111 L=µ . (7) 

Using (2) and (7), one gets 
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where jg  and ja  are respectively the j th column of the matrices G  and A . Using (3) and (7), one gets: 
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where ijδ  is the Kronecker delta. Substituting (5), (8) and (9) in (6), one gets 
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The necessary conditions for the maximization of J  are: 

krmJ ,,1 ,          * L) ==∇ 0
mu

 , (11) 

krmJ ,,1 ,          * L==∇ 0
mg

 , (12) 
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In evaluating the gradient vector w.r.t. mu)  in (11) one should view mu)  and *
mu)  as two different vectors, i.e. 

one should treat mu)  as a constant vector when finding *
mu)

∇  [10]. The same remark applies to the gradients 

in (12) and (13). One should notice that conditions (12) and (13) lead to the constraints (2) and (3) 

respectively. In preparation for applying the remaining condition (11), one takes the gradient of (10) to get 

( )

( ) ( )

( ) ( )[ ]H
k

r

i
miimk

r

i
im

r

j
mjk

k

kk

hh

hhJ

)(

1

*

11

*
*

m
mkm

H
m

im
H

m

ijm
H

mu

hhUgIFu

ugIFu

uugIFu
m

+−−−=

+−−−=

−−−−=∇

∑

∑∑

=

==

)

)

))
)

λ

λ

λ

 (14) 



 5

where mh  and )(mh  are respectively the m th column and row of matrix H  and 

( )
kr21k uuuU )

L
)))

= . (15) 

Applying the set of conditions (11) to (14), one gets 

( )[ ] ( ) kk
H rm ,,1 ,          )( L

)
=−−=+ m

H
m

m
mk gIFuhhU λ . (16) 

This set of kr  vector equations can be compactly expressed as one matrix equation 

( ) ( ) GIFUHHU H
k

H
k kλ−−=+

)
 (17) 

where 

( )
kr21k uuuU L= . (18) 

Equation (17) can be expressed as 

( ) GIFUWU H
kk kλ−−=

)
 (19) 

where W  is the Hermitian matrix of order kr  defined by 

HHHW += . (20) 

In order to arrive at the target matrix kU
)

 it remains to find the two matrices G  and W  and eliminate them 

from (19). 

 

IV. ELIMINATION OF LAGRANGE MULTIPLIERS MATRIX G 

 

 Matrix G  will be eliminated by applying the first set of constraints expressed by (2). Premultiplying (19) 

by ( )IF kλ−  and applying (2), one gets 

( )( ) ( ) k
H UIFGIFIF kkk λλλ −=−− . (21) 

Since matrix F  is unitary, it is diagonalizable [8]; moreover its modal matrix can be taken to be unitary. 

Therefore a modal decomposition of F  is given by 
HVDVF =  (22) 

where V  is a unitary modal matrix and D  is a diagonal matrix. It follows that 

( ) HVIDVIF kk λλ −=− . (23) 

Upon substituting (23) in (21), one gets 

( )( ) ( ) k
HH UVIDVGVIDIDV k

H
kk λλλ −=−− . (24) 

Let K  be the number of distinct eigenvalues of F  which implies that matrix D  can be expressed as 

{ }IIID KDiag λλλ ,,, 21 L= . (25) 

The corresponding partitioned form of V  is 
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( )K21 VVVV L= . (26) 

Premultiplying both sides of (24) by 1V −  and utilizing (25) and (26), equation (24) reduces to the following 

set of K  matrix equations5 
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L=−=− k
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H
i UVGV λλλλ . (27) 

For ki = , the above equation is immediately satisfied. Therefore G  should be chosen to satisfy the 

following ( )1−K  matrix equations: 
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The unitarity of V  together with (26) lead to 

∑
=
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i 1
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H VVVVI . (30) 

This implies that 

k
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K
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where kP  is the orthogonal projection matrix on the kth eigenspace of F  and is given by 
H
kkk VVP = . (32) 

Therefore matrix G  can be eliminated from (19) by using (29) and (31) resulting in 

kkk UPWU =
)

. (33) 

 

V. EVALUATION OF MATRIX W AND SOLUTION FOR MATRIX kU
)

 

 

(A) Evaluation of matrix W 

 

 The Hermitian matrix W  will be determined using the second set of constraints expressed by (3). One 

starts by using (33) in order to get 
                                                           

5 Since the kth eigenspace kE  is under consideration, the subscript k is fixed. 
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kk
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H UPPUWUUW =
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. (34) 

Since kP  is a projection matrix, it satisfies 

k
H
k PP =           and          kk PP =2 . (35) 

Applying condition (3) together with the above condition one finds that (34) reduces to 

kk
H
kkk

H
k

H
k

H2 UPUUPPUWWW === . (36) 

The above equation can be expressed as 

k
H
k

2 UUW ~~=  (37) 

where 

kkk UPU ≡~ . (38) 

This implies that the columns of kU~  are the orthogonal projection of the corresponding columns of kU  on 

the kth eigenspace of matrix F . It will be assumed that the columns of kU~  are linearly independent which 

results in the nonsingularity of 2W  based on the form of (37). Consequently the Hermitian matrix 2W  is 

positive definite and its singular value decomposition is given by 
H2 TTW Λ=  (39) 

where T  is a unitary matrix and  

{ }
kr

ddDiag ,,1 L=Λ  (40) 

with 021 >≥≥≥
kr

ddd L . Although (39) can also be regarded as an eigenvalue decomposition of 2W , one 

should never try to apply a general purpose eigendecomposition routine to implement the decomposition 

because 2W  might have repeated eigenvalues and the corresponding eigenvectors may not be orthogonal. 

Utilizing a singular value decomposition (SVD) routine will guarantee the unitarity of matrix T  in (39). The 

square root of 2W  can generally be expressed as 
HTSTW =  (41) 

where 

{ }
kr

ddDiag ±±=  ,, 1 LS . (42) 

 

(B) Solving for Matrix kU
)

 

 

 Having determined W  (apart of the signs of the diagonal elements of S ), the solution of (33) is obtained 

as 
1−= WUPU kkk

)
 (43) 
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where 1W −  is determined from (41) as 
HTTSW 11 −− = . (44) 

In the final expression of kÛ  given by (43), the presence of the premultiplying projection matrix kP  

guarantees that the columns of kÛ  are eigenvectors of F  pertaining to the kth eigenspace; hence constraint 

(2) is satisfied. It is straightforward to show that (43) satisfies constraint (3). It remains to select the single 

matrix out of the kr2  matrices given by (42) which maximizes criterion (5). Using (43), (35) and (36) one 

gets 

WWWUPUWUU 21
k

H
k

H
k

H
k

H
k === −−ˆ . (45) 

The above equation together with (41) and the properties of the trace of a matrix lead to 

( ) ( ) ( ) ( )STSTTSTUU HH
k

H
k trtrtrtr ===ˆ . (46) 

The last equation together with (42) and (5) result in 

( )∑
=

±=
kr

i
ib dJ

1
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Therefore the criterion bJ  is maximized when all the signs on the R.H.S. of the above equation are positive. 

Consequently matrix S  in (42) is uniquely determined as 

{ }
kr

ddDiag ,,1 L=S . (48) 

 

VI. THE ALGORITHM 

 

 Based on the theoretical findings of last section the direct batch evaluation by constrained optimization 

algorithm (DBEOA) can be summarized in the following steps: 

1. Form matrix 2W  as ( )kk
H
k

2 UPUW = . 

2. Find the SVD of 2W  as H2 TTW Λ= . 

3. Compute 1W −  as HTTSW 11 −− =  where S  is given by (48) and (40). 

4. Evaluate kÛ  as ( ) 1−= WUPU kkk

)
. 

 

 The computational load of finding the optimal basis of the kth eigenspace consists mainly of one SVD of 

a square Hermitian matrix of order kr  and four matrix multiplications. The SVD requires6 ( )3
krO  floating 

                                                           
6  The symbol ( )LO  stands for the order of magnitude.  



 9

point operations (flops) where an operation stands for a multiplication and an addition [11] and the four 

matrix multiplications require ( )22 2 kkk rNrNr ++  flops. 

 In the orthogonal procrustes algorithm (OPA) expounded in [12] and used in [5] and [6], one seeks the 

minimization of criterion (1) with the desired matrix kÛ  expressed as 

kkk QVU =ˆ  (49) 

where kV  is assumed to be a known krN x  matrix whose columns form an initial orthonormal basis of the 

eigenspace kE  and kQ  is a unitary matrix to be solved for by the algorithm. The form (49) ensures that the 

columns of kÛ  are eigenvectors of F  and hence (49) is equivalent to constraint (2). The unitarity condition 

on kQ  ensures the orthonormality of the columns of kÛ  and hence it is equivalent to constraint (3). 

Consequently the DBEOA and OPA are two solutions of the same constrained optimization problem and 

should produce identical results if there is no round off error involved in the lengthy computation; which 

will never be the case. Stated another way, there might be some discrepancy between the outputs of the 

DBEOA and OPA because they are algorithmically quite distinct despite being theoretically equivalent. 

 Apart from the prerequisite of generating initial orthonormal eigenvectors of F, one needs to perform – 

for each eigenspace – one SVD of a square matrix of order kr  and three matrix multiplications in order to 

implement the OPA. The SVD requires ( )3
krO  flops and the three matrix multiplications require ( )kk rNr +22  

flops. In the case of the DFT matrix and if one employed the technique contributed by Candan et al. [4] for 

generating the initial eigenvectors by the eigendecomposition of the nearly tridiagonal matrix S proposed by 

Dickinson and Steiglitz [2], one has to first generate matrix S and perform two matrix multiplications each 

requiring 3N  flops in order to single out two real symmetric tridiagonal matrices each of order Nq 5.0≈ . 

Next eigendecomposition is applied to each of these two matrices which requires ( )3qO  flops [13]. This 

implies that the DBEOA is definitely more computationally efficient than the OPA. 

 

VII. SIMULATION RESULTS 

 

 The general results of this paper are applied to the DFT matrix where the number of eigenspaces is 4=K  

and where the columns of the matrices 4,,1 , L=kkU  are rearranged samples of the Hermite-Gaussian 

functions [5]. The optimal eigenvectors, i.e. the matrices 4,,1 , ˆ L=kkU  are computed using both the 

DBEOA of section VI and the OPA where in the latter case the required initial eigenvectors (i.e. the four 

matrices 4,,1 , L=kkV  mentioned in (49)) are generated by the eigendecomposition of the nearly 

tridiagonal matrix S [4]. For each of the DBEOA and OPA the Euclidean norm of the error vectors between 
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the optimal eigenvectors (the columns of the matrices 4,,1 , ˆ L=kkU ) and the approximate but desirable 

eigenvectors (the columns of the matrices 4,,1 , L=kkU ) are computed and plotted. 

 In the absence of round off error – which is unavoidable in floating point computation – the two 

techniques DBEOA and OPA would produce identical results. It has been found by simulation that there is 

no noticeable difference in their outputs for values of N  up to 256. However for higher values of N some 

discrepancy in the norms of the error vectors ( ) ,N,m L1 , ˆ =−≡ mmm uue  for large values of m becomes 

obvious. Figure 1 shows the norms of the error vectors for both techniques for 512=N . Table 1 depicts the 

computation time (in seconds) of the final eigenvectors given the approximate ones. The conclusion is that 

the DBEOA is faster than the OPA. In order to check the numerical orthonormality of the optimal 

eigenvectors, the orthonormality error matrix ( )IUU −ˆˆ H  - which is theoretically zero – is computed. Two 

measures of the orthonormality error – namely the maximum element in absolute value of this matrix as well 

as its Frobenius norm – are computed and given in Table 2. One notices that the orthonormality error is 

negligible for both the DBEOA and OPA for values of N as large as 256 which is regarded as a large value 

given that both methods are sophisticated and involve SVD of matrices of order Nrk 25.0≈ . Although the 

OPA seems to have a better numerical robustness, one should observe that the orthonormality error in the 

DBEOA case does not always grow steadily with N since its value for 2000=N  is less than its value for 

1024=N .  

 Only for the sake of comparison the results of the Gram-Schmidt Algorithm (GSA) – which is based on a 

completely different rationale [5] – are also given in Fig. 1 and Tables 1 and 2. Figure 1 shows that for all 

methods the norms of the error vectors become relatively large for large values of m ( Nm 5.0> ). The 

interpretation is that for large m, samples of the Hermite-Gaussian function of order m become a poorly 

approximate eigenvector of the DFT matrix as was proved in [5]. The general observation is that the GSA 

has a larger error for values of m close to N compared to both the OPA and DBEOA; however it has the 

merit that the threshold value of m where the error becomes noticeable is larger. An examination of Table 2 

shows that the GSA seems to be less numerically robust than both the OPA and DBEOA. 

 

VIII. CONCLUSION 

 

 The evaluation of optimal orthonormal eigenvectors of the DFT matrix F in the sense of being the closest 

to approximate eigenvectors – formed by samples of the Hermite Gaussian functions - is formulated as a 

constrained optimization problem where the minimization criterion is the squared Frobenius norm of the 

difference between the matrices of the exact and approximate eigenvectors. The method is direct in the sense 

of not requiring prior generation of initial exact eigenvectors. The unitarity of matrix F is exploited in 
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decoupling the problem such that optimal orthonormal basis for each individual eigenspace are batch 

evaluated. The contributed direct batch evaluation by constrained optimization algorithm (DBEOA) has 

been shown by both analysis and simulation to be faster than the orthogonal procrustes algorithm (OPA). 
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Table 1: The computation time (in seconds) 

 
N OPA DBEOA GSA 
32 0.0625 0.03125 0.015625 
128 0.078125 0.03125 0.0625 
256 0.375 0.171875 0.421875 
512 2.96875 1.1875 3.390625 
1024 22.96875 8.265625 27.359375
2000 191.0625 57.71875 220.3125 

 
 

Table 2: Two measures of the orthonormality error 
 

OPA DBEOA GSA N Maximum Frobenius norm Maximum Frobenius norm Maximum Frobenius norm 
32 2.78E-15 8.25223E-15 2E-15 1.40816E-14 7.68E-16 4.07316E-15 
128 4E-15 2.8328E-14 4.85E-10 1.99582E-09 5.56E-12 8.54883E-12 
256 3.33E-15 5.19285E-14 0.00778 0.043024189 0.914656 1.3346918 
512 6.66E-15 9.77425E-14 0.269404 4.1853546 0.999647 18.772675 
1024 6E-15 1.99409E-13 0.733461 16.833423 0.996978 49.52763 
2000 2.6E-14 4.02989E-13 0.354972 14.061739 0.998109 144.06594 
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Fig. 1: The norm of the error vectors ( ) ,N,m L1 , ˆ =−≡ mmm uue  between the exact and approximate 

eigenvectors for 512=N . 


