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Abstract 

 This work is concerned with the signal interpolation problem, i.e., given only samples of 

a signal, a method is derived for evaluating its samples on finer grids. The derivation is based on 

a discrete-time decimation formula. In the special case where the known samples have the 

Hermitian property, two schemes are presented and mathematically proved to result in 

interpolated points having the same property. The first scheme does not utilize the known 

sample at the origin and results in a square system of equations to be solved for the unknown 

interpolated points of the signal. The second scheme has the merit of utilizing all the known 

samples, but it results in an overdetermined system of equations to be solved by the least 

squares method. The exploitation of the elegant properties of the involved centrosymmetric 

matrices is central to the treatment presented here. 

Keywords: Interpolation, Hermitian signal, centrosymmetric matrix, discrete-time decimation. 

Mathematical Subject Classification: 15A57, 41A05, 94A12, 15A06 

I. Introduction 

 Starting from a discrete-time decimation formula, an interpolation method for a 

bandlimited signal is proposed. More specifically, given only the samples )( 1Tkψ of a signal 

)(tψ corresponding to a sampling period T, the technique generates the samples 
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⎟ for k2 = 1, ... , ( a m

0 -1) – where 0a  and m are positive integers and 10 >a  - 

corresponding to a sampling period ma
TD

0

= . The larger the value of the integer m, the finer 

the interpolation points will be. Figure 1 illustrates the layout of the given and interpolated 

samples for the case of 20 =a  and 2=m . The special case where the known samples have the 

Hermitian property, namely )()( * nTnT ψψ =− , is treated in detail and two schemes are 

proposed and mathematically proved to result in interpolated samples having the same property. 

One scheme does not utilize the known sample )0(ψ and results in a square system of equations 

to be solved for the unknown interpolated points of )(tψ . A second scheme utilizes all the 

known samples and results in an overdetermined system of equations to be solved by the least 

squares method. Exploiting the elegant properties of the involved centrosymmetric matrices 

proves the fact that the interpolated samples have the Hermitian property. 

 In section II the general case of an arbitrary signal is considered and the proposed 

interpolation method is developed based on a discrete-time decimation formula. In section III 

the two schemes pertaining to the special case of a Hermitian signal are presented. In section IV 

some simulation results are demonstrated showing the superiority of the second scheme. 

 

II. The General Case: Interpolation of an Arbitrary Signal 
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 Let )(tψ be a bandlimited signal and assume that only its samples corresponding to the 

sampling period T are known. It is required to find the samples corresponding to the higher 

sampling rate, i.e., the smaller sampling period 
T

a m
0

 where a0  and m are positive integers. The 

problem can be mathematically stated as: Given the sequence 

ψ ψ[ ] ( )n nT=  (1) 

find the interpolated sequence 

ψ ψm mn n T
a
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. (2) 

These sequences are related by 

[ ]ψ ψ[ ]n a nm
m= 0  . (3) 

Therefore the given sequence ][nψ can be regarded as a decimated version of the required 

sequence ][nmψ  with a decimation ratio a m
0 . Using the available results on sampling discrete-

time signals and decimation, referring to Fig.2 (a,b) and assuming that α π< , one concludes 

that the discrete-time Fourier transforms of ][nψ  and ][nmψ  are related [1] by 
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Taking the inverse transform of both sides of the above equation, one gets 
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Using the definition of the discrete-time Fourier transform, the above equation reduces to 
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Interchanging the order of integration and summation results in 
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Performing the above integration and using the sinc function [2] 

( )
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Since for any integer p, 
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equation (9) reduces to 
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and upon utilizing (3), the above equation simplifies to 
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Using equations (1) and (2), the above equation can be expressed as 
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This is the key formula to be exploited for evaluating )(tψ  at t kT
a

k pam
m= ≠

0
0 ,  , (p integer) 

given )(tψ at t = nT. Expressing the integer k as 

k k a km= +1 0 2  (14) 

and noticing that k pa m≠ 0  implies that k2 0≠ , Eq. (13) can be rewritten as 
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where it has been assumed that the contribution to the left hand side of ψ(t) values outside the 

range, k1min T < t < k1max T, is negligible. In order to evaluate the ( )( )a k km
0 1 11− −max min  

unknowns appearing on the left hand side of (15), one should write that equation for the same 

number of values of n in order to get a square linear system of algebraic equations to be solved 

for ψ k
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m - 1) and k1 = k1min , ... , k1max - 1. For numerical stability 

the range of n values should include the range of k1 values in the middle. 

In the simple case of a0 = 2 and m = 1, Eq. (15) reduces to 
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Here there is only one unknown for each sampling interval; namely the value of ψ(t) at the 

midpoint of the interval. Consequently the number of unknowns is just ( )k k1 1max min−  and one 

can take the set of n values to be identical to that of the k1 values. 
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 Given ψ(t) at the sampling instants Tkt 1= , computing ψ k
k
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( )12,,12 −= mk L  to any required degree of subdivision can be accomplished using either of 

the following two methods: 

One) Apply Eq. (15) to find all the fractional points of ψ(t) in one step by solving a large 

system of ( )( )2 1 1 1
m k k− −max min  equations. 

Two) Apply Eq. (16) on m stages starting by the given values for T, k1min and k1max to find 

ψ(t) at t = (k1 + 0.5)T; interlace these values with those of ψ(t) at t = k1T and use the 

resulting set on the right hand side of (16) in the next stage after halving T and doubling 

k1min and k1max . 

III. The Special Case: Interpolation of a Hermitian Signal 

 Some signals like the Morlet wavelet have the Hermitian property [3,4], namely, 

( ) ( )ψ ψ− =t t* . (17) 

Here the support of ψ(t) is symmetric and (15) takes the form 
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The number of fractional points of ψ(t) to be evaluated is 2N where  

N L K=   (19) 

and 

( )L a m= −0 1  . (20) 

 In what follows two schemes will be presented for finding the 2N interpolated points of 

ψ such that they will inherit the Hermitian property of the known samples )(nTψ of the signal 

)(tψ . In the first scheme exactly 2N values of n symmetrically located with respect to the 

origin are substituted in (18), i.e., n = -N, … , -2,-1,1,2, … ,N where n = 0 has been excluded. 

The advantage of having a square system of 2N equations to be solved for the 2N unknowns is 

to be considered versus the disadvantage of introducing a gap at n = 0 in the sequence of known 

samples. In the second scheme (2N + 1) values of n symmetrically located with respect to the 

origin are substituted in (18), i.e., n = -N, … ,-1,0,1, … ,N. The advantage of utilizing all the 

known samples of )(nTψ is to be assessed versus the disadvantage of having a minimally 

overdetermined system of (2N + 1) equations in 2N unknowns. 

 

III.A The First Scheme 

 The 2N values n = -N, … ,-1,1, … ,N (where n = 0 has been excluded) are substituted in 

(18) and the resulting 2N constraints are arranged in matrix form to get 
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Ax y=  (21) 

where 

( ) ( ) ( ) ( ) ( )[ ]Tm NTTTNTay ψψψψ LL −−−= 10  (22) 

and x is the 2K-partitioned vector 

[ ]TKK xxxxxx 1101 −−−= LL  (23) 
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m - 1)-dimensional vector 

T

m

m

mmk T
a

a
kT

a
kT

a
kx

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

0

0

00

121 ψψψ L  . (24) 

The square matrix A of order 2N in (21) can be expressed as the partitioned matrix 
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The above four partitioned matrices have been expressed in terms of the (a0
m - 1) - dimensional 

row vector Fp,q defined by 
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In the special case of a0 = 2 and m = 1, the vector Fp,q reduces to a scalar. 
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Theorem 1 

Matrix A defined by (25) with P, Q, R, and S defined by (26)-(29) is centrosymmetric. 

Proof: 

Vector Fp,q defined by (30) is a function of the difference (p-q); moreover, 

F Fp q q p, ,= − −  . (31) 
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By comparing (33) and (30) it is obvious that 

F J F Fp q L q p q p, , ,= =+ −1 1   . (34) 
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Premultiplying S of (27) by JN and postmultiplying it by the same matrix expressed in the 

partitioned form 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

L

L

L

N

J
J

J

J
N

 (37) 

leads to 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−

−

LLLK

LLLK

LNLNLKN

NN

JFJFJF
JFJFJF

JFJFJF

SJJ

0,11,1)1(,1

0,21,2)1(,2

0,1,)1(,

L

L

MMOM

L

 . (38) 

Using the regular matrix notation, the (i,j) partition of the above matrix is given by 
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[ ]J SJ F JN N i j N i K j L, ,= − + −1         ,  i =  1 ,  ...  ,  N    ,     j =  1 ,  ...  ,  K  (39) 

and upon utilizing (34) it reduces to 

[ ]J SJ FN N i j K j N i, ,= − −   . (40) 

Similarly the (i,j) partition of matrix P of (26) is given by 

[ ]P Fi j N i K j, ,= − + − − + −1 1  . (41) 

Applying property (31) and calling to remembrance that Fp,q is a function of only ( )p q− , the 

above equation can be reexpressed as 

[ ]P F

F
i j N i K j

K j N i

, ,

,

=

=
− + − +

− −
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From (40) and (42) one concludes that 

[ ] [ ]J SJ PN N i j i j, ,=         ,  i =  1 ,  ...  ,  N    ,     j =  1 ,  ...  ,  K  (43) 

and hence 

J SJ PN N =  . (44) 

Using the fact that 

JJ I=  (45) 

where I is the identity matrix, one concludes from (44) that 

J PJ SN N =  . (46) 

By the same token it can be proved that 

J RJ QN N =  (47) 

and consequently 

J QJ RN N =  . (48) 

Substituting (44), (46) - (48) into (36) and comparing with (25) one gets 

J AJ AN N2 2 =  . (49) 

Therefore matrix A is centrosymmetric [5].  (Q.E.D.) 

 Since the known samples of ψ(t) satisfy the Hermitian property 

ψ ψ( ) ( )*− =nT nT , (50) 

the vector y defined by (22) is a Hermitian vector, i.e., 

Jy y* =  . (51) 

Taking the complex conjugate of both sides of (21), noticing that matrix A is real, 

premultiplying by J2N and using property (45) of the contra-identity matrix, one obtains 

( )( )JAJ Jx Jy* *=  . (52) 

Upon utilizing (49) and (51) one gets 

AJx y* =  . (53) 
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Assuming the nonsingularity of matrix A, (21) and (53) result in 

Jx x* = . (54) 

Therefore the solution vector x of (21) is a Hermitian vector which implies that the interpolated 

values of ψ(t) satisfy the Hermitian property as desired. 

 

III.B The Second Scheme 

 Writing (18) for n = -N, … ,-1,0,1, … ,N and arranging the resulting (2N+1) equations in 

matrix form, one gets 

zBx =  (55) 

where the vector of unknowns x is defined by (23) and (24) and where z is the )12( +N - 

dimensional vector 

( )[ ]Tm NTTTNTaz )()()0()()(10 ψψψψψ LL −−−= . (56) 

The (2N+1) x 2N matrix B in (55) is the partitioned matrix 
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⎡
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where the four square matrices P, Q, R, and S of order N are the same as in (26)-(29) and the N-

dimensional row vectors f and g are defined by 

[ ]1,0)1(,0,0 −−−−= FFFf KK L , (58) 

[ ])1(,01,00,0 −= KFFFg L  (59) 

with vector qpF , defined by (30). 

Theorem 2 

Matrix B defined by (57) is centrosymmetric. 

Proof: 

Pre- and postmultiplying B by the contra-identity matrices 12 +NJ and NJ 2  respectively, one gets 
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⎠

⎞
⎜⎜
⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=+

N

N

N

N

NN J
J

B
J

J
BJJ 1212  (60) 

and upon substituting (57) one obtains 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=+

NNNN

NN

NNNN

NN

PJJQJJ
fJgJ
RJJSJJ

BJJ 212 . (61) 

Expressing NJ  as the partitioned matrix (37) and using (59), one gets 

[ ]LLLKN JFJFJFgJ 0,01,0)1(,0 L−=  (62) 
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and upon applying (34), one obtains 

[ ]0,10,20, FFFgJ KN L= . (63) 

By virtue of (31), the above row vector reduces to 

[ ]1,02,0,0 −−−= FFFgJ KN L  (64) 

and consequently (58) and (64) lead to 

fgJ N = . (65) 

Postmultiplying both sides of the above equation by NJ  and applying (45) one obtains 

gfJ N = . (66) 

Substituting (44), (46), (47), (48), (65) and (66) in (61) and comparing with (57) one finally 

concludes that 

BBJJ NN =+ 212  . (67) 

Therefore matrix B is centrosymmetric1. 

  (Q.E.D.) 

 The least squares solution vector LSx  of (55) can be computed from the normal equations 

[6], 

zBBxB T
LS

T =  . (68) 

By virtue of (67) and (45) it follows that 
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.
212212

21212222

BB

BJJBJJ

BJJJBJBJBJ

T
NN

T
NN

NNN
T

NN
T

N

=

=

=

++

++

 (69) 

Therefore, the square matrix of coefficients of the normal equations (68) is centrosymmetric. 

Taking the complex conjugate of both sides of (68), noticing that B is real, premultiplying by 

NJ 2  and using (45), one gets 

( ) ( ) *
12122

*
222 zJJBJxJBJBJ NN

T
NLSNN

T
N ++=  . (70) 

The definition (56) of vector z and the Hermitian property (50) lead to 

zzJ N =+
*

12  . (71) 

Substituting (67), (69) and (71) in (70) one gets 

( ) zBxJBB T
LSN

T =*
2  (72) 

                                                           
1 Here the definition of a centrosymmetric matrix given in [5] for a square matrix has been extended to a 

rectangular matrix. 
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If matrix B of (57) has a full column rank of 2N, the matrix BBT  will be nonsingular and 

consequently the least squares solution vector LSx  in (68) will be unique. Therefore (68) and 

(72) lead to 

LSLSN xxJ =*
2  (73) 

This property of the least squares solution vector of the overdetermined system of equations 

(55) implies that the interpolated values of the signal )(tψ will have the Hermitian property as 

desired. 

 The interpolation technique presented in this paper has been inspired by the scaling 

operation of the wavelet theory where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ma
t

0

ψ  is obtained from the mother wavelet ( )tψ  by 

scaling [3,4]. When compared to the popular spline interpolation technique [7,8], the present 

method has the advantage of a reduced computational load since there is no need for first 

finding the coefficients of each spline segment joining every pair of successive points and 

second substituting the values of the intermediate points in order to get the interpolated samples. 

The present method also has an elegant matrix formulation of the problem – involving a 

centrosymmetric matrix – that leads to a formal proof that the interpolated samples will have the 

Hermitian property should the given samples have it. 

IV. Simulation Results 

 Two examples are presented for the interpolation of a Hermitian signal given only a finite 

set of its samples. In the first example the signal, namely the Shannon wavelet, is exactly 

bandlimited but its rate of decay in the time domain is slow. In the second example the signal, 

namely the Morlet wavelet, is not exactly bandlimited although its rates of decay in both the 

time and frequency domains are sufficiently high. 

Example 1: 

 The Shannon wavelet shown in Fig. 3a, is defined by [3]: 

( ) ( )2/3cos
2/

2/sin)( t
t

tt π
π
πψ =  (74) 

and its continuous-time Fourier transform shown in Fig. 3b is given by: 

⎩
⎨
⎧ <Ω<

=ΩΨ
otherwise               0

2              1
)(

ππ
 (75) 

The Nyquist sampling frequency for this bandlimited signal is π4  rad/sec and the 

corresponding sampling period is T = 0.5 sec. For the purpose of testing the interpolation 

schemes presented in the previous section, only the 17 samples – shown in Fig. 4 – 

corresponding to the Nyquist rate will be assumed known, i.e., the values of the signal beyond |t| 

= 4 sec will be considered negligible. This signal is interpolated to get 24 - 1 = 15 additional 

samples between every pair of the given samples by halving the sampling interval 4 times since 
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it has been found experimentally that implementation method (b) mentioned at the end of 

section II has better numerical behavior than implementation method (a) mentioned there. The 

two interpolation schemes of section III are applied and the resulting interpolated signals are 

shown in Fig. 5a,b respectively. The corresponding interpolation error – defined as the 

difference between the interpolated signal and the exact one of (74) – is plotted for both 

schemes in Fig. 6a,b respectively. 

 In this example the apparent inferiority of the first interpolation scheme – based on 

excluding the middle sample )0(ψ in a quest for a square system of equations – to the second 

scheme can be attributed to two reasons. Mainly, the signal does not decay fast enough in the 

time domain and consequently it is not sufficient to use only samples confined to |t| ≤  4 for the 

purpose of interpolation. Secondarily, the number of assumed known samples of 17 is small and 

excluding the middle sample in the first scheme explains the large interpolation error around t = 

0 in Fig. 6a. Interestingly, the second interpolation scheme exhibits a satisfactory performance 

although it is based on the approximate least squares solution of an overdetermined system of 

equations. The relatively large interpolation error towards the ends of the interval 44 ≤≤− t  

in Fig. 6b is expected since no known samples have been assumed to exist beyond |t| = 4. 

Example 2: 

 The Morlet wavelet shown in Fig. 7a is defined by 

ψ ( ) .t e et j t= −0 5 2
0Ω  (76) 

and its continuous-time Fourier transform – shown in Fig. 7b – is given by 

( )Ψ Ω Ω Ω( ) .= − −2 0 5 0
2

πe  (77) 

See [3]. Since )(ΩΨ  is not bandlimited in the strict sense, its band edge (cutoff frequency) cΩ  

will be taken to be the value of Ω  at which )(ΩΨ  drops to ε  of its peak value at 0Ω=Ω . It 

is straightforward to show that 

Ω Ωc = + −0 2 lnε  (78) 

and consequently the sampling period T should satisfy 

T
c

<
π
Ω

 . (79) 

 Although )(tψ is not strictly time-limited, its support will be practically taken as ctt ≤  

where ct  is the time at which )(tψ  drops to ε  of its peak value of 1)0( =ψ . It is obvious that 

εln2−=ct  . (80) 

 For the purpose of this example the center frequency π20 =Ω  rad/sec and the tolerance 

parameter ε  = 0.001 will be used. Equations (78)-(80) result in cΩ = 10 rad/sec, T < 0.314 
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second and ct  = 3.717 seconds respectively. Taking T = 0.25 second and the support of )(tψ  to 

be 4≤t  results in the 33 samples shown in Fig. 8 and regarded as the only known samples of 

this signal. Applying both interpolation schemes of the last section to generate 24 - 1 = 15 

additional samples between every pair of given samples by halving the sampling interval 4 

times as has been done in the previous example, one gets the interpolated signals of Fig. 9a,b 

where only the real parts are plotted. By comparing these two figures with the exact Morlet 

wavelet of Fig. 7a, it is obvious that both interpolation schemes produce quite satisfactory 

results. A careful examination of the corresponding interpolation errors shown in Fig. 10a,b 

reveals the relative merit of the second scheme. The main reason for the interpolation results of 

the present example to obviously outperform those of the previous one is that the Morlet 

wavelet decay fast enough in the time domain so that samples in the interval 44 ≤≤− t  are 

enough for the purpose of signal reconstruction. This rapid decay in the time domain of the 

Morlet wavelet – not exhibited by the Shannon wavelet – has more than counterbalanced the 

fact that it is not strictly bandlimited. 

 It should be mentioned that when the two implementation methods mentioned at the end 

of section II were tried in the above two examples it was found that method (a) suffers 

numerical instability because the involved matrix becomes ill-conditioned for m > 1. Actually 

all the simulation results presented here – for both interpolation schemes – were obtained by 

implementation method (b).  

 The second interpolation scheme of section III involving a minimally overdetermined 

system of equations – where the number of equations exceeds the number of unknowns by just 

one – has been shown to give better results when compared to the first scheme involving a 

square system of equations. Consequently one might be tempted to employ a more 

overdetermined system of equations with the objective of decreasing the interpolation error. 

This suggestion corresponds to including equations containing ( )nTψ  values as right hand 

sides of (16) for n values outside the region where the interpolation is taking place. A careful 

consideration of the details of the numerically stable implementation method (b) reveals that this 

suggestion is not tractable since at each stage the interpolated samples ( )( )Tk 5.01 +ψ  should 

be interlaced with the given samples ( )Tk1ψ  and consequently the ( )nTψ  values to be used as 

right hand sides of (16) should lie in the same region where the interpolation is taking place, i.e., 

the system of equations should only be minimally overdetermined. The intuitive motivation 

behind the above suggestion is getting more information about the shape of the signal ( )tψ  by 

using more function values. The proper accommodation of this idea is to enlarge the region 

where the interpolation is taking place. This can be done by decreasing min1k  and increasing 

max1k  in (16) and consequently using a larger range of n values, i.e., incorporating more values 
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( )nTψ  of the signal ( )tψ . In order to experimentally test this idea, example 2 above was 

repeated with 5≤t  ( instead of 4≤t  ) as the support of ( )tψ  while fixing the remaining 

parameters. The corresponding interpolation errors for the two processing schemes are shown in 

Fig. 11a, b. By comparing Figs. 10a and 11a, one notices the decrease of the interpolation error. 

The same conclusion holds when comparing Figs. 10b and 11b. 

V. Conclusion 

 Two interpolation schemes have been proposed for the reconstruction of a Hermitian 

signal given its samples. The first scheme ignores the middle sample in a quest for a square 

system of linear equations to be solved for the interpolated points. The second scheme retains all 

known samples and necessitates the use of the least squares approximate solution of an 

overdetermined system of equations. The simulation results reveal the superiority of the second 

scheme. 
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Fig. 1: The given and interpolated samples of ( )tψ . 
( x : given sample   ,   o : interpolated sample ) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: A frequency domain illustration of the relation between ( )ωj
m eΨ  and ( )ωjeΨ . 
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Fig. 3a: The Shannon wavelet )(tψ . 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3b: The continuous-time Fourier transform )(ΩΨ of the Shannon wavelet )(tψ . 
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Fig. 4: The given samples of the Shannon wavelet. 
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Fig. 5a: The interpolated Shannon wavelet using the first scheme. 

 
Fig. 5b: The interpolated Shannon wavelet using the second scheme. 
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Fig. 6a: The interpolation error for the Shannon wavelet in the first scheme. 

 
Fig. 6b: The interpolation error for the Shannon wavelet in the second scheme. 
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Fig. 7a: The Morlet wavelet )(tψ . 

 
Fig. 7b: The continuous-time Fourier transform )(ΩΨ of the Morlet wavelet )(tψ . 
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Fig. 8: The given samples of the Morlet wavelet. 
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Fig. 9a: The interpolated Morlet wavelet using the first scheme for 4≤t . 

 
Fig. 9b: The interpolated Morlet wavelet using the second scheme for 4≤t . 
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Fig. 10a: The interpolation error for the Morlet wavelet in the first scheme for 4≤t . 

 

 
Fig. 10b: The interpolation error for the Morlet wavelet in the second scheme for 4≤t . 
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Fig. 11a: The interpolation error for the Morlet wavelet in the first scheme for 5≤t . 

 

 
Fig. 11b: The interpolation error for the Morlet wavelet in the second scheme for 5≤t . 
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