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ABSTRACT 

 A vector of digital filters is derived for the multichannel processing of the signals acquired by an array of 

sensors with the objective of extracting multiple desired signals by the attenuation of multiple interferences and 

random noise. The signals and interferences are assumed to have arbitrary waveforms with no a priori knowledge 

of these waveforms. The time duration of the recorded array data is assumed to be long enough to incorporate all 

time delayed propagated waveforms at the sensors of the array. The derivation is for the general case of an 

arbitrary array geometric configuration and is not confined to the special case of a linear array of equispaced 

sensors. The rationale adopted in the derivation of the filters is to give first priority at each discrete frequency to 

passing the signals, a second priority to canceling the interferences and a third priority to attenuating the random 

noise. This rationale well suits the case of seismic data, that are dominantly corrupted by strong interferences 

rather than random noise. Solving a constrained minimization problem derives the vector of array filters. The 

computation of this vector requires the application of the powerful QR matrix decomposition technique for the 

detection of any redundant and/or inconsistent constraints at each discrete frequency. The simulation results 

demonstrate the extraction ability of the derived filters in both the multiple input single output and the multiple 

input multiple output processing schemes. 
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I. INTRODUCTION 

In seismic prospecting for oil, data are acquired by an array of sensors, e.g. geophones or hydrophones. Seismic 

data consist of weak desired signals corrupted by strong coherent interferences and random noise. Desired 

signals can result from reflections by subsurface oil carrying layers and coherent interferences can arise from 

different modes of ground roll causing direct propagation in the form of Rayleigh waves from the source of the 

seismic explosion to the array of sensors [1-3]. Many techniques have been applied for the off-line processing of 

the recordings of the seismic array for the purpose of signal extraction. These techniques vary drastically in their 

degree of sophistication and in their extraction ability. The delay-and-sum, the weighted delay-and-sum methods 

[4] and the Chebyshev technique [5] are simple multichannel methods for combining the array data that have 

been time-shifted to be aligned on a single desired signal. The optimum array filters of [6] and the absolutely 

optimum array filters of [7] are multichannel frequency-domain techniques derived for extracting a single desired 

signal by attenuating a single interference without explicitly taking random noise into consideration. Optimum 

array filters were also derived for extracting a single desired signal by suppressing a single interference [8] or 

multiple interferences [9] while explicitly taking random noise attenuation into account as a secondary objective. 

The theme of this paper is the solution of the more general and more challenging problem of frequency-domain 

multichannel processing of the array data with the objective of extracting multiple desired signals by suppressing 

multiple interferences in the presence of random noise. More specifically, a vector of digital filters will be 

derived for the multichannel processing scheme of Fig. 1 by giving a first priority at each discrete frequency for 

achieving all-pass conditions for the sum of the signals (if at all possible), a second priority for suppressing the 

interferences (if not in conflict with the first objective) and a third priority for attenuating the random noise. This 

rationale, apart from its mathematical elegance, typically suits the case of seismic array data that are dominantly 

corrupted by interferences rather than random noise. It should be mentioned that although the present paper deals 

with a more general case than those in [6-9] do, it is based on the same assumptions (to be given next section). It 

should be emphasized that this work is aimed at extracting the arbitrary waveforms of the signals rather than 

finding their directions of arrival. Knowledge or estimation of the delay times of the signals and interferences is 

required only to be able to apply the array filters with the goal of attenuating the interferences and suppressing 

the random noise in order to help extracting the waveforms of the signals. 
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Since there are more than one desired signal and since the beamforming configuration of Fig. 1 has only one 

output trace, the most that can be done is to extract the sum of the desired signals as they appear on any given 

trace (a trace is defined as the data recorded by the sensor) to be referred to as the reference trace which can be 

for example the first trace. Any sensor can be taken as the reference sensor by measuring all delay times of the 

signals and interferences with respect to that sensor. Adopting this point of view, if the desired signals are 

nonoverlapping on the reference trace – although being overlapping on the remaining traces – and if the array 

filters are able to achieve enough attenuation of the interferences and random noise, then the desired signals will 

be identifiable on the single output trace (although being difficult to identify on the input traces including the 

reference trace). It should be emphasized that the mathematical derivation of this paper is general and is not 

based on an assumption of having nonoverlapping desired signals on a certain trace. It should also be pointed 

out that since the signals travel in different directions, they cannot be replaced by one signal equal to their sum, 

and consequently the array filters of [9] cannot be applied for the multiple signals case; they can only be applied 

for extracting one signal at a time. One situation where one is interested in getting the sum of several signals 

occurs in the case of a horizontal array of geophones receiving reflections from several subsurface layers where 

the delay times for each layer follow a hyperbolic law [3]. Due to the different depths of the layers the desired 

signals can be nonoverlapping in the recordings of some of the geophones and their sum on a reference geophone 

will be of prime importance. Another example can occur in the case of vertical seismic profiling where the 

geophones of the array are deployed vertically underground rather than being placed horizontally under the 

surface of the earth [2]. 

In section II, the mathematical model for the array data is presented and in Section III the array filters are 

derived. In section IV, the implementation of the array filters is considered where the QR matrix decomposition 

technique is applied for the detection of any redundant and/or inconsistent constraints which is of prime 

importance for the method of this paper. The QR matrix technique is also applied for the computation of the 

vector of digital filters. In section V, some simulation results are presented for both the multiple input single 

output and the multiple input multiple output processing schemes. 
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II. THE MATHEMATICAL FORMULATION OF THE PROBLEM 

 After defining the notation to be used in this paper and stating the main assumptions, the model of the time-

domain array data will be introduced and then transformed to the frequency domain. Some vectors and matrices 

will be defined in order to put the problem in a compact form. The algorithm for processing the array data will be 

provided. 

Nomenclature 

N Number of sensors of the array 

K Length of the recording of each sensor 

1q  Number of desired signals 

2q  Number of coherent interferences 

nz  The n th trace of the array (the signal recorded by the n th sensor), Nn ,,1L=  

mx  The m th desired signal, 1,,1 qm L=  

mu  The m th coherent interference, 2,,1 qm L=  

nw  The random noise in the recording of the n th sensor 

nmξ  The delay time of the m th desired signal at the n th sensor 

nmβ  The amplitude scale factor of the m th desired signal at the n th sensor 

nmτ  The delay time of the m th coherent interference at the n th sensor 

nmα  The amplitude scale factor of the m th coherent interference at the n th sensor 

2
nσ  The variance of nw , Nn ,,1L=  

Assumptions 

- The 1q  waveforms )(rxm and 2q  waveforms )(rum where r is the discrete time, are arbitrary and generally 

different with no a priori knowledge of those waveforms except their lengths in order to select K appropriately; 

(i.e. the treatment is not confined to the case of narrowband signals). 

- The array geometric configuration is arbitrary (rather than being restricted to the case of a linear array with 

equispaced sensors). 
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- The sampling rate is high enough such that the delay times nmξ and nmτ are integers. 

- The length K of each sensor recording is large enough to incorporate all samples of all signals and 

interferences after time shifting. If only random noise appears near the end of each trace, one can tell that K is 

sufficiently large despite the lack of any knowledge about the waveforms of the signals and interferences. (See 

Figs. 2 and 9). Consequently K is determined by the time duration of all signals and interferences as well as their 

maximum propagation delays across the array. The length of the FFT to be applied for transforming the input 

traces to the frequency domain is also K. 

- 1q  and 2q  are known and Nqq <+ 21 . In most practical cases 1q  and 2q  can be determined by an expert 

examination of the recorded seismic traces given knowledge of the physical setting of the seismic experiment. 

For example in the case of a horizontal array, the weak up-traveling signals are the desired ones and the strong 

down-traveling signals are the interferences. (See the simulation results). 

- The signals mx and interferences mu are deterministic and have finite time support. 

- The random noise terms )(rwn are zero-mean temporally white and spatially uncorrelated, i.e. uncorrelated 

for different n. Those random noise terms model the ambient noise in the medium where the sensors are deployed 

and the imprecision of the recording process. 

- The delay times nmξ and nmτ are either known or can be estimated from the recorded data using any of the 

delay time estimation techniques [10-11]. 

- For each signal )(rxm , 1,,1 qm L= , the amplitude scale factors nmβ , Nn ,,1L=  can be estimated from a 

knowledge of the attenuation properties of the medium and the geometric configuration of the array. In most 

cases especially for signals arriving from far sources, the nmβ are assumed to be equal. The same applies to the 

amplitude scale factors nmα , Nn ,,1L=  of the m th interference mu , 2,,1 qm L= . 

- The relative values of the variances 2
nσ  of the random noise terms Nnwn ,,1 , L=  are assumed to be 

known from knowledge of the nature of the random disturbances in the field where the sensors are deployed. In 

most cases the 2
nσ 's are assumed to be equal. It will be shown in section III that the expression of the derived 

array filters depends only on the relative values of the nσ 's rather than on their absolute values. 
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The Mathematical Model 

 The data recorded by an array of N sensors will be modeled as: 

( ) ( ) )(
11

)(
21

rnw
q

m nmrmunm
q

m nmrmxnmrnz +∑
=

−+∑
=

−= ταξβ        , Nn ,,1L=  

                                                                                                                    , 1,,0 −= Kr L  (1) 

where xm(r) and um(r) are the m th coherent signal and interference respectively. Here the word ‘coherent’ is 

always used in the sense that each source signal leads to coherent sensor signals, and not that the source signals 

are coherent among themselves. Putting it another way, the m th interference has the same arbitrary waveform 

)(rum  for all the N sensors of the array apart from the scale factors nmα  and delay times nmτ . The same applies 

to the desired coherent signal x rm ( ) . 

 Taking the K-point discrete Fourier transform (DFT) [12] of (1), one gets3: 
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where ω  is the Fourier frequency4: 

ω π
=

2 k
K

                                                                                                   , 1,,0 −= Kk L . (3) 

In order to express (2) concisely one defines the following N-dimensional vectors : 
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3Here the linear shift is the same as circular shift since K is assumed to be large enough to incorporate all samples of 
all signals and interferences after time-shifting. 
4Since ω  depends on k, it should have been written as kω ; however, the subscript k has been dropped to simplify the 
notation. 
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and the following 1q -dimensional vector of transformed desired signals and the 2q -dimensional vector of 

transformed interferences: 
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One also defines the following 1qN ×  and 2qN ×  matrices: 

( )(k)b(k)1bB(k)
1qL=  (6) 

and 

( )(k)a(k)1aA(k)
2qL=  . (7) 

Using (4)-(7), one gets - from (2) - the following vector form for the transformed array data5 : 

W(k)(k)U(k)*A(k)X(k)*BZ(k) ++=  . (8) 

 Typically the beamforming configuration of Fig. 1 is used for processing the array data. The discrete Fourier 

Transform (DFT) of the output of this multichannel processing scheme is : 

(k)F(k)'Z=)(kY   (9a) 

where )(kF  is the column vector whose components are the Discrete Fourier Transform (DFT) representation of 

the array filters to be derived next section, i.e.  

( ) ( ) ( )( )'
1 kFkF NL=kF  (9b) 

Combining (8) and (9a), one obtains: 

(k)W(k)'F(k)F(k)A(k)'U(k)F(k)B(k)'X +⎟
⎠
⎞⎜

⎝
⎛ ++⎟

⎠
⎞⎜

⎝
⎛ +=)(kY  . (10) 

                                                 
5The superscripts * , ' , + denote the complex conjugate, the transpose and the Hermitian transpose, respectively. The three 
symbols are used since they are needed in different situations. 
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 In the model (1): xm(r) and um(r) are deterministic, and the random noise term wn(r) is a K-point segment of 

a sample of a discrete-time random process. Since the noise terms wn(r) are zero-mean, subtracting from (10) its 

expected value remembering that )(kW  is the only random term on the right hand side of (10), one gets: 

[ ] (k)W(k)F′=− )()( kYEkY  (11) 

where E[ ] is the expectation operator. ( [ ]E  is an ensemble average operator and not an average operator over 

k). Therefore the variance of Y(k) is given by: 

[ ] (k)*F(k)W(k)W(k)F ⎥⎦
⎤

⎢⎣
⎡ +′=⎥⎦

⎤
⎢⎣
⎡ − EkYEkYE 2)()(  . (12) 

 Let ( )rw  be the N-dimensional discrete-time vector random process whose elements are 

( ) Nnrwn ,,1  , L= . Consider K samples ( ) ( ){ }1Kw0w −,,L of ( )rw . Let ( ) 1,,0 , −= Kk LkSw  be 

samples of the power spectral density matrix of ( )rw  [13-15]. Similarly let ( )kSv  be samples of the power 

spectral density of the scalar random process ( )rv  defined by its DFT ( )kV  as: 

[ ]V k Y k E Y k( ) ( ) ( )= −  . (13) 

Both ( )kSw  and Sv(k) are evaluated at the discrete frequency k corresponding to the Fourier frequency ω of (3). 

It can be proved that for a vector random process: 

⎥⎦
⎤

⎢⎣
⎡ +

∞→
=

∞→
(k)W(k)W(k)wS

K
E

K
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K
Lim 1

. (14) 

This result is a generalization of its counterpart for the scalar case [15]: 

⎥⎦
⎤

⎢⎣
⎡

∞→
=

∞→
2)(1)( kV

K
E

K
LimkvS

K
Lim . (15) 

The approximation employed here is to substitute (14) and (15) in (12) although the length K is finite, to get: 

(k)(k)F(k)SF *
w

'=)(kvS . (16) 

 Since it is assumed that the random processes from which the samples ( )rwn  are drawn are spatially 

uncorrelated, matrix ( )kSw  will be diagonal; and since those random processes are temporally white, this 

diagonal matrix will be constant [13,14]. Therefore ( )kSw  reduces to: 



 9

{ }2,...,2
1 NDiagw σσ== G(k)S  (17) 

where σn
2  is the variance of the discrete-time white random noise process corresponding to the term wn(r). From 

(16) and (17) one gets the following expression for the output power spectral density in response to the random 

noise: 

(k)GF(k)F+=)(kvS . (18) 

The Signal Extraction Algorithm: 

1. Select the reference trace. 

2. Identify the number of signals and interferences and their delay times (with respect to the reference trace) and 

amplitude scale factors. 

3. Compute the DFT of each of the input traces. 

4. For each discrete frequency k = 0 , ... , K-1 compute the vector F(k)  of array filters (to be derived below) and 

the output Y(k) using (9a). 

5. Take the inverse DFT of Y(k) to get the time domain single output trace y(n) of the multichannel array 

processing scheme. 

III. DERIVATION OF THE VECTOR OF ARRAY FILTERS 

 The objective here is to derive the vector F(k) of array filters to be applied to the array data to get the output 

of the multichannel processing scheme using (9a). The philosophy to be followed in approaching the solution 

will be first stated, the set of independent and consistent constraints will be identified, and a constrained 

optimization problem will be solved to get the optimal vector F(k) . Finally a comparison with other 

beamforming methods will be provided. 

Philosophy 

 The 3 terms, which appear on the right hand side of (10), can be interpreted as the outputs in response to the 

desired signals, the interferences and the random noise respectively. Stated another way, the terms (k)F(k)B+  

and (k)F(k)A+  represent the processing of the multiple signals and multiple interferences respectively, while 

the last term is due to the random sensor noise. Since the multichannel scheme of Fig. 1 has only one output 
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trace, the most that can be done in extracting the signals is to try to extract their sum as they appear on a 

reference trace as was delineated in Section I. This can be achieved by making Y(k) as close as possible to 

X(k)µ′  at each discrete frequency k, where µ  is the summing vector defined by: 

( )′= 11 Lµ . (19) 

This can be accomplished by trying to achieve (if at all possible) the following goals : 

1. An all-pass processing of the desired signals by imposing the set of 1q  linear constraints: 

 µ(k)F(k)B =+  . (20) 

2. Suppression of the interferences by imposing the set of 2q  linear constraints: 

 0(k)F(k)A =+  . (21) 

3. Attenuation of the random noise by the minimization of the output power spectral density (18) in response to 

the random noise. 

 The philosophy to be followed here is to rank these goals in the above order. Since extracting the desired 

signals that have arbitrary waveforms is the main objective, the first goal is of prime importance; and since 

typically seismic array data are corrupted by interferences rather than random noise, the second goal ranks 

rationally before the third one.  

Independent and Consistent Constraints 

 It will be assumed that the number of array sensors is larger than the number of signals and interferences, i.e.,  

Nqq <+ 21 . (22) 

However the joint set of 21 qq +  constraints of (20) and (21) may not be independent or even consistent. Dealing 

with this situation is the main concern of the method presented here. Let r1 be the rank of matrix B(k) . If 

11 qr =  then (k)B+  will have a full row rank and consequently the set of 1q  equations of (20) will be both 

linearly independent and consistent [16]. If 11 qr <  then the 1q  equations of (20) can be generally classified into 

the following 3 sets (where any of the last two can be empty) : 
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a) a set of 111 rq =  independent and consistent equations6: 

 µ(k)F(k)1B =+  (23) 

b) a set of 12q  consistent equations which are linearly dependent on the first set: 

 µ(k)F(k)2B =+  (24) 

c) a set of 13q  inconsistent equations (i.e. cannot be satisfied simultaneously with (23)): 

 µ(k)F(k)3B =+  (25) 

Matrix (k)1B+  consists of a set of maximum number of linearly independent rows of (k)B+ . The rows of 

(k)2B+  and (k)3B+  are linearly dependent on those of (k)1B+ . Therefore the two sets of constraints (23) and 

(24) are feasible while the set (25) is infeasible. If the equations of (23) are satisfied, then those of (24) will also 

be satisfied. Therefore the set of consistent and dependent constraints (24) will be dropped from consideration; 

however, the signals corresponding to the rows of matrix (k)2B+  will enjoy the same all-pass condition as those 

corresponding to the rows of matrix (k)1B+ . Because of the linear dependence, matrix (k)B3  can be expressed 

as: 

(k)TB(k)B 13 =  (26) 

where T  is a 1311 qq ×  matrix. Consequently the difference between both sides of (25) which cannot be satisfied 

as an equality because of the infeasibility, reduces to: 

µµT

µ(k)F(k)BTµ(k)F(k)B 13

−=

−=−
+

+++

 (27) 

where the last equality was obtained by utilizing (23). Therefore the norm µ(k)F(k)B3 −+  is a constant 

independent of vector F(k)  as long as the constraint (23) is satisfied. This implies that nothing can be done to 

                                                 
6 Although the vectors µ  in (20) and (23)-(25) are all defined by (19), they are not the same vector since they have 
different dimensions. 
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help passing the signals corresponding to the rows of matrix (k)B3
+ . The identification of the columns of matrix 

(k)B1  from those of matrix B(k)  and the challenging problem of the implementation of the array filters will be 

treated in detail next section. 

 Next the feasibility of the constraints of (21) - in charge of suppressing the interferences - will be 

investigated subject to the requirement that vector F(k)  has been constrained to satisfy (23). The 2q  rows of 

matrix (k)A+  of (21) will be most generally classified into the following 3 sets (any of them can be empty):  

a) a set of 21q  rows (k)1A+  which are linearly independent and at the same time independent of the rows of 

matrix (k)1B+  of (23). 

b) a set of 22q  rows (k)2A+  which are linearly dependent only on the rows of (k)1A+ . 

c) a set of 23q  rows (k)3A+  which are linearly dependent on the rows of (k)1B+  and possibly on the rows of 

(k)1A+ . 

Let the corresponding sets of constraints respectively be : 

0(k)F(k)1A =+  (28) 

0(k)F(k)2A =+  (29) 

0(k)F(k)3A =+  (30) 

Since the rows of +
2A  are linearly dependent on those of +

1A , Eq. (29) will be satisfied once Eq(28) is so. 

Therefore the constraints of (28) will be retained and those of (29) will be dropped from consideration; however 

the interferences corresponding to the rows of (29) will enjoy the same suppression at the k th discrete frequency 

as those corresponding to the rows of (28). 

 Based on the above classification, matrix (k)A3  can be expressed as: 

(k)RA(k)PB(k)A 113 +=  (31) 
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where P  and R  are matrices of dimension 2311 qq ×  and 2321 qq ×  respectively and where P  cannot be zero 

while R  can be zero. Using (31),(23) and (28), the left-hand side of (30) reduces to: 

µP

(k)F(k)AR(k)F(k)BP(k)F(k)A 113
+

+++++

=

+=
 (32) 

Consequently constraint (30) cannot be satisfied except in the very unexpected case when the right hand side of 

(32) is accidentally the zero vector. Moreover the norm of the difference between both sides of (30) cannot be 

minimized since by virtue of (32), (k)F(k)A 3
+  is a constant vector that is independent of F(k)  as long as (23) 

and (28) are satisfied. Therefore nothing can be done for attenuating the interferences corresponding to the rows 

of matrix (k)A 3
+ . However since the situation of having redundant and/or inconsistent constraints can be 

different for different values of the discrete frequency k , even those interferences corresponding to the infeasible 

constraints of (30) will receive some attenuation on the average. 

 The 11q  all-pass constraints of (23) and the 21q  suppression constraints of (28) form a set of consistent and 

independent constraints that can be compactly expressed as: 

d(k)F(k)C =+  (33) 

where C(k)  is the ( )2111 qqN +×  partitioned matrix: 

( )(k)1A(k)1BC(k) M=  (34) 

and d  is the ( )2111 qq + -dimensional partitioned vector: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0

µ
d L  . (35) 

Matrix C(k)  has a full column rank because of the way the matrices (k)1B  and (k)1A  have been defined. The 

linear system (33) is underdetermined based on assumption (22) and consequently it has a family of solution 

vectors F(k) . 
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Constrained Optimization 

The freedom in the solution space of (33) will be exploited in minimizing criterion (18) that accounts for 

attenuating the random noise. In the Appendix, the unique complex vector F(k)  that minimizes (18) subject to 

(33), will be derived using the Lagrange multipliers technique [17-19] to get: 

 d
1

C1GCC1GF(k)
−
⎟
⎠
⎞⎜

⎝
⎛ −+−=  (36) 

One should notice that the matrix ⎟
⎠
⎞⎜

⎝
⎛ −+ C1GC  is nonsingular since G  is nonsingular and C  has a full column 

rank. Since the above vector F(k)  is invariant under scaling of the diagonal matrix G  of (17), one concludes 

that F(k)  depends only on the relative values of the variances 2
nσ 's rather than on their absolute values. 

 From (34), one gets: 
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and using the form of the inverse of a partitioned matrix [20] and substituting (35), one obtains: 
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−+−+−−+−+

−
−+−

−
−+

−
−+−+−−+

=
−

−+

µ

1

1
B1G

1
A

1

1
A1G

1
A

1
A1G

1
B

1
B1G

1
B

1
B1G

1
A

1

1
A1G

1
A

µ

1

1
B1G

1
A

1

1
A1G

1
A

1
A1G

1
B

1
B1G

1
B

d
1

C1GC (38) 

Substituting from (38) and (34) into (36), one gets : 

µ

1

1
B1G

1
A

1

1
A1G

1
A

1
A1G

1
B

1
B1G

1
B

1
B1G

1
A

1

1
A1G

1
A

1
A

1
B1GF(k)

−
−+

−
−+−+−−+−+

−
−+−−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ (39) 

 This is the optimal filter for extracting multiple signals by attenuating multiple interferences and random 

noise. It extends and generalizes the previous result obtained by the author for the special case of extracting a 

single signal under the same assumptions [9]. 
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A Comparison with Other Beamforming Methods 

 The signal extraction technique reported in this paper applies mainly to seismic data where the processing of 

the recording of the array of seismometers is done off-line. Consequently the descriptor beamformer used here is 

distinct from that used in other work [21] where the beamformer is defined as a signal processor used in 

conjunction with a set of antennas that are spatially separated. By an expert examination of the seismic traces, 

the geophysicists equipped by their knowledge about the location where seismic data have been acquired can 

determine the desired signals and interferences. Next they estimate the delay times of the signals and 

interferences by applying any of the available delay time estimation techniques [10,11]. 

 In the method presented in this paper, the minimization criterion has been the output power spectral density 

in response to only the random noise as given by (18). Therefore it is distinct from the multiple sidelobe canceler 

(MSC) method where the weights are chosen by minimizing the expected value of the total output power with 

the possible disadvantage of the cancellation of the desired signal [21-23]. It is also distinct from the reference 

signal method [22,24] where the weights are evaluated by minimizing the mean square error between the 

beamformer output and the reference signal necessitating the generation of the latter. 

 In addition to using a different minimization criterion, the technique of this paper is quite distinct from the 

linearly constrained minimum variance (LCMV) beamforming method [21,22,25] in other aspects. First, 

identifying redundant and/or inconsistent constraints has been a main focus in the derivation presented here 

while in the LCMV method the linear independence and consistency of the constraints were taken for granted. 

Although having linearly dependent or conflicting constraints does not arise very often, ignoring this issue can 

lead to singular matrices and invalid results. The situation is aggravated by the fact that different constraints are 

used for different discrete frequencies. Second, in the point constraints version of the LCMV method [26], point 

constraints are used for fixing the beamformer response at points of both spatial direction and temporal 

frequency thus consuming many of the degrees of freedom represented by the number of weights of the 

beamformer and consequently reducing the degrees of freedom left for random noise attenuation [22]. In 

contrast, in the present method the constraints fix the beamformer response at points of only spatial direction 

since a new vector )(kF is evaluated for each discrete frequency k. Consequently more degrees of freedom are 

left for random noise attenuation. 
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 The technique of this paper is distinct from those presented in the book by Johnson and Dudgeon [19] since 

the main objective here is the extraction of signals having arbitrary waveforms. In contrast, the eigenanalysis 

algorithms of [19] are direction of arrival estimation techniques meant for finding the direction of propagation of 

the signals rather than estimating their waveforms. 

 In conclusion, the unique features of the method of this paper are: extracting signals of arbitrary waveforms 

by attenuating interferences of arbitrary waveforms, deriving an explicit expression for the DFT representation of 

the vector of array filters ( )kF  in a mathematical framework which identifies any redundant and/or inconsistent 

constraints, and working with arbitrary array geometry rather than a uniform linear array. Therefore, the 

approach followed here is distinct from that of other researchers [19,22-29]. It is a clear extension and 

generalization of the work reported in [7-9] under the same assumptions. 

IV. IMPLEMENTATION OF THE ARRAY FILTERS 

 In order to implement the array filters derived above, vector ( )kF  of (36) should be computed for all 

discrete frequencies 1,,0 −= Kk L  and substituted in (9a) to get Y(k). As a preliminary step for computing 

vector ( )kF  one should extract matrix 1B  from the columns of matrix B  of (6) and extract matrix 1A  from the 

columns of matrix A  of (7).  

 First, the QR matrix decomposition technique with column pivoting is applied to matrix B  to determine its 

rank r1 and a set of r1 linearly independent columns, which will form matrix 1B  [30]. More specifically: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+

00
12R11R

BPQ  (40) 

where Q  is a unitary matrix of order N, P  is a permutation matrix of order 1q , 11R  is a nonsingular upper 

triangular matrix of order r1 and 12R  is a rectangular matrix which arises only if B  is rank deficient )( 11 qr < . 

Strictly speaking, the QR decomposition has been computed for the matrix BP  rather than for the matrix B . 

Since P  is a permutation matrix (i.e. a matrix obtained from the identity matrix by permuting its columns), each 

column of P  will have only one nonzero element whose value is the unity. If matrix B  is expressed as the 

column partitioned matrix ( )
1q21 bbbB L=  and if the j th column of P  is ie  (the unit vector whose 
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only nonzero element is the i th one), then the j th column of BP  will be ib  rather than jb . In this manner one 

can generate matrix 1B  by selecting the first 1r  columns of BP . 

 Second, matrix 1A  can be generated by forming the augmented matrix: 

( )A1BE M=  (41) 

and finding its QR decomposition while freezing the first r1 columns and allowing column pivoting for the 

remaining columns. Matrix 1A  is then formed by the independent columns of E  apart from those forming 1B . 

 Having prepared the matrices 1B  and 1A , one turns to the main task of computing vector F(k)  of (36). The 

accuracy of the entire array filtering process depends on the numerical accuracy and stability of the 

computational procedure used for evaluating F(k) . A careful look at (36) reveals that the heart of the procedure 

is the solution of the following linear system of equations : 

ηξC1GC =⎟
⎠
⎞⎜

⎝
⎛ −+ . (42) 

where dη = . Because of the diagonal structure of matrix G  of (17), the above linear system can be expressed 

as: 

( ) ηξWW =+  (43) 

where W  is the N x NC rectangular matrix defined by: 

CW
⎭
⎬
⎫

⎩
⎨
⎧

=
Nσ

,,
σ

Diag 11

1

L  (44) 

and 

2111 qqNC +=  . (45) 

Matrix W  has a full column rank since C  has the same property and the premultiplying diagonal matrix in (44) 

is nonsingular. 

 In order to accurately solve the system (43), the QR decomposition with the pivoting option is applied to 

matrix W  to get: 

+= QRPW  (46) 
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where Q  is a unitary matrix of order N obtained as the product of NC Householder transformation matrices and 

P  is a permutation matrix of order NC. The N x NC matrix R  has the form: 

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
0

R
R L

~

 (47) 

where R~  is an upper triangular matrix of order NC. Matrix R~  is nonsingular since matrix R  in (46) like matrix 

W , has a full column rank. From (46) and (47) and after exploiting the unitarity of Q , one gets: 

+++ = PRRPWW ~~
 (48) 

and consequently the linear system (43) can be expressed as: 

( ) ηPξPRR +++ =~~
 . (49) 

Therefore vector ξ  can be evaluated by scrambling vector η  to get ηP + , solving two triangular systems of 

equations, and finally unscrambling the solution vector ( )ξP +  to get ξ . 

 In summary the algorithm for computing )(kF  is: 

1. Apply the QR technique to B  in order to identify 1B . 

2. Apply the QR technique to E  of (41) in order to identify 1A . 

3. Form matrix C  of (34) and W  of (44). 

4. Apply the QR technique to W  to get R~ . 

5. Solve the two triangular systems of (49) with dη =  defined by (35) in order to get ξ . 

6. Compute CξGF(k) 1−= . 

 The LINPACK software package [30] was used for performing the computations delineated in this section; 

and the complex version of the subroutines was chosen because of the nature of the involved matrices. The 

subroutine CQRDC was used for QR decomposing B  in (40), E  of (41) and W  in (46). Finally two calls to the 

subroutine CTRSL were needed for solving (49). It should be emphasized that the last step cannot be replaced by 

a single call to the subroutine CPOSL because the triangular matrix R~  in (49) may have negative diagonal 
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elements since it has been obtained by the QR decomposition of the rectangular matrix W  in (46) rather than by 

the Cholesky decomposition of the square positive definite matrix WW +  in (48). 

 The approximate number of flops (floating point operations), where an operation stands for a multiplication 

and addition, for the above algorithm is given in Table 1. Since 111 qq ≤  and 221 qq ≤ , the total number of flops 

required for computing ( )kF  can be approximated by:  

( )( ) ( ) ( )( )21
3

21
2

21
3
1

2
1 12

3
212

3
1 qqNqqqqNqNq ++++−+++− . 

V. SIMULATION RESULTS 

 Since the model (1) of array recordings well suits the seismic data where the signals are reflections from 

subsurface layers and the interferences are different modes of propagation of the ground roll traveling directly 

from the source of the explosion to the geophones, synthetic seismic traces will be generated and processed in 

this section. In the first example the data will be processed according to the multiple input single output scheme 

of Fig. 1 and in the second example the multiple input multiple output scheme, to be explained below, will be 

used. 

A Multiple Input Single Output Example 

 The 16 synthetic seismic traces of Fig. 2 have been generated by combining the three signals of Fig. 3 - 

shown in their locations on the first trace (reference trace) - and the three interferences of Fig. 4 (also shown in 

their locations on the first trace) in addition to random noise according to the model of Eq. (1). The three desired 

signals are assumed to be traveling up and to have commensurate delay times corresponding to intersensor travel 

times of 2, 4, and 8 respectively where all times are in terms of the sampling period. The three interferences are 

assumed to be traveling down and to have commensurate delay times corresponding to intersensor travel times of 

8, 6, and 4 respectively. All interferences have the same energy level which is 6 dB above that of any of the 

desired signals which all have the same energy level. The amplitude scale factors βnm  of the desired signals are 

all unity while their counterparts αnm of the interferences are given in Table 2. The random sensor noises have 

been produced by a generator of pseudorandom numbers from a standard normal distribution and then scaled to 

be 13.979 dB below the level of any of the desired signals (in order for the amplitude level of the random noise 

to be 0.2 times that of any desired signal). The length of each trace is K = 800 samples which is adequate to 
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incorporate all signals and interferences irrespective of their delay times as can be seen from Fig. 2. Figure 5a 

shows all the desired signals together as they should appear on the first trace (reference trace) and Fig. 5b shows 

the first trace (having signals, interferences and random noise) drawn to the same scale as Fig. 5a. One can hardly 

recognize the desired signals in the traces of Fig. 2. 

 After transforming the input array traces by the FFT with the same length K = 800, the resulting array data 

have been processed by the filters derived in Section III and the output is shown in Fig. 6. By comparing Figs. 5a 

and 6, it is obvious that the array filters have been able to extract the three desired signals. Actually the desired 

signals are quite identifiable on the output trace of Fig. 6 and not identifiable on the input reference trace of Fig. 

5b. In order to interpret the discrepancy between Figs. 6 and 5a, one starts by noticing that having commensurate 

delay times for the signals implies that in (1): 

ξ nm mn d= − −( )1             ,  n =  1 ,  ...  ,  N  (50) 

where d1 = 2, d2 = 4 and d3 = 8. Since the amplitude scale factors snm 'β  are all unity, Eqs. (4) and (6) imply that 

matrix B(k) is a 16 x 3 Vandermonde matrix where all elements of the first row are unity. Consequently the right-

hand side vector of (20) is equal to the first column of the coefficient matrix )(kB + , implying that the linear 

system of equations (20) is consistent [16]. Hence the set of inconsistent equations of the form of (25) is empty 

for all values of the discrete frequency k. Therefore the discrepancy between the output in Fig. 6 and the sum of 

the signals in Fig. 5a is only due to random noise and residual interference. In order to verify the heuristic claim 

that this discrepancy is mainly due to random noise, the same synthetic traces were generated without adding 

random noise and the result of filtering is shown in Fig. 7 which astonishingly compares perfectly with Fig. 5a. 

The interpretation is that using nonequal amplitude factors snm 'α  for the interferences in (1) as given in Table 2 

tends to decrease the chance of having a nonempty subsystem of the form of (30) which is responsible for the 

residual interference in the output. In order to further verify this heuristic interpretation, the same random noise 

free input traces were generated using αnm = 1 (instead of the values of Table 2) and the result of filtering is 

shown in Fig. 8 where the residual interference is noticeable. 

A Multiple Input Multiple Output Example 

 Since the recording of a single sensor of the array is a set of temporal samples and since at each recording 

instant the recording of the array is a set of spatial samples, the acquired array data are two dimensional in nature. 
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If the output of the filtering process is to be used for an application such as seismic migration where having 2D 

data is a requirement, the single-output processing scheme of Fig. 1 will no longer be adequate. Multiple output 

can be generated by employing a sliding window that can only cover M traces of the available N traces ( M << 

N). Initially, the window covers traces 1, 2,..., M and the corresponding output is computed as in the single 

output scheme (using M rather than N traces), then the window slides one location to cover traces 2, 3,..., (M+1) 

and so on until eventually the window covers traces N-M+1, N-M+2,..., N. The resulting processing scheme will 

have N input and (N - M + 1) output traces [31]. There are two factors to be taken into account in the selection of 

the window length M. First since the filter )(kF  of (36) will have M instead of N components, constraint (22) 

implies that 21 qqM +> ; actually the larger the value of M the better will the filter be able to attenuate the 

interferences and random noise. Second since the number of output traces is only (N-M+1) compared to the N 

input traces, one should have M << N. Of course it is recommended to have a large value of N when using the 

multiple input multiple output scheme. 

 The 24 synthetic input traces of Fig. 9 have been generated by combining the first two signals of Fig. 3 and 

the first two interferences of Fig. 4 in addition to random noise. The two signals are up traveling with intersensor 

delay times of 11 and 4 units and equal nmβ 's; and the two interferences are down propagating with intersensor 

delay times of 8 and 6 units and nonequal nmα 's. A sliding window of length M = 8 was used for generating the 

output traces of Fig. 10. It is obvious that the array filters have been able to extract the two desired signals. 

VI. CONCLUSION 

 A vector of array filters has been derived for processing the recordings of an array of sensors in a 

multichannel scheme with the objective of extracting multiple signals by attenuating multiple interferences and 

random noise. The rationale adopted in the derivation is based on the following ranking of objectives: achieving 

all-pass conditions (whenever possible) for the signals, imposing complete suppression (whenever feasible) for 

the interferences, and attenuating the random sensor noise. This model well suits the seismic data which are 

dominantly corrupted by interferences rather than random noise. The derived filters have been successfully 

applied in both the multiple input single output and the multiple input multiple output processing schemes where 

in the latter a window is slid on the input traces and for each window position the output is obtained as in the 

single output scheme. 
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APPENDIX  

Statement of the Problem :  

Find vector F  which minimizes 

GFF+=J  (A1) 

where G  is a nonsingular Hermitian matrix7 subject to the linear constraints : 

dFC =+  (A2) 

where matrix C  has a full column rank. 

Solution : 

The complex constraints of (A2) can be augmented to the real criterion of (A1) through the complex vector p  of 

Lagrange multipliers to get the augmented criterion : 

pdFCdFCp
+
⎟
⎠
⎞⎜

⎝
⎛ −+−⎟

⎠
⎞⎜

⎝
⎛ −++−= JaJ  (A3) 

Substituting (A1) into (A3), one gets : 

pddpqFFqGFF +++++−+−+=aJ  (A4) 

where 

Cpq =  (A5) 

The minimizer of aJ  with respect to the complex vector F  is [18]: 

qGF 1−=  (A6) 

Substituting this vector in (A2) and using (A5), one gets: 

dCp1GC =−+  . (A7) 

The matrix C1GC −+  is nonsingular since G  is nonsingular and C  has a full column rank. Consequently the 

Lagrange multipliers vector is given by: 

                                                 
7 Although matrix G  in (18) is real and diagonal, it has been allowed to be any Hermitian matrix in the derivation of 
this appendix for the sake of generality. 
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d
1

C1GCp
−
⎟
⎠
⎞⎜

⎝
⎛ −+=  . (A8) 

Substituting (A5) and (A8) in (A6), one gets: 

d
1

C1GCC1GF
−
⎟
⎠
⎞⎜

⎝
⎛ −+−=  . (A9) 
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Table 1: The computational cost for ( )kF  based on the algorithm of section IV. 

 

Step Number of flops 

1 3
1

2
1 3

1 qNq −  

2 ( ) ( )3
211

2
211 3

1 qqqqN +−+  

3 ( )2111 qqN +  

4 ( ) ( )3
2111

2
2111 3

1 qqqqN +−+  

5 ( ) ( )2111
2

2111 qqqq +++  

6 ( )2111 qqN +  

 

 

Table 2: The amplitude scale factors nmα  's of the interferences. 

n 
1nα  2nα  3nα  n 

1nα  2nα  3nα  

1 1 1 1 9 1.08 1.16 1.24 

2 1.01 1.02 1.03 10 1.09 1.18 1.27 

3 1.02 1.04 1.06 11 1.10 1.20 1.30 

4 1.03 1.06 1.09 12 1.11 1.22 1.33 

5 1.04 1.08 1.12 13 1.12 1.24 1.36 

6 1.05 1.10 1.15 14 1.13 1.26 1.39 

7 1.06 1.12 1.18 15 1.14 1.28 1.42 

8 1.07 1.14 1.21 16 1.15 1.30 1.45 
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Fig. 1 : Multichannel array processing scheme. 
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Fig. 2 : Synthetic seismic traces. 

 
Fig. 3 : The individual desired signals. 
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Fig. 4  : The individual coherent interferences. 

 
Fig. 5a : The desired signals together as they appear on the first trace. 
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Fig. 5b : The first trace. 

 
Fig. 6 : The output for noisy input data and N = 16. 
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Fig. 7 : The output for noiseless input data and nonequalαnm 's . 

 
Fig. 8 : The output for noiseless input data and equalαnm 's . 
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Fig. 9 : The input traces of the multiple input multiple output example. 

 
Fig. 10 : The output traces of the multiple input multiple output example. 
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