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Abstract 

 The stability of a Tank and Hopfield type neural network is investigated for the general case of 

practically encountered complex eigenvalues sD  of the matrix product D Dg
T

f  where Dg  and Df  are 

approximations to the connection matrix D on the signal and constraint sides of the neural net respectively. 

A stability criterion in the form of an analytic expression is derived thus generalizing the results obtained 

by Yan [8] for the special case of purely real eigenvalues.  

I. Introduction 

 Culhane, Peckerar and Marrian presented an electric circuit for computing the Discrete Hartley 

Transform (DHT) and Discrete Fourier Transform (DFT) [1]. This circuit shown in Fig. 1 is a modified 

Tank and Hopfield linear programming neural network [2] and has the nice feature of computing the DHT 

and DFT within RC time constants of the order of nanoseconds. Several variants of this circuit model have 

been used for solving linear and nonlinear programming problems [3-7]. With some modifications, the 

circuit can be used for solving linear Least Squares Error (LSE) problems [8]. The neural net of Fig. 1 has 

signal and constraint sides denoted by the subscripts g and f respectively. Dg  and Df  are M x N 

interconnection conductance matrices, τ g g gR C=  and τ f f fR C=  are the relaxation time constants; ug  

, vg  and α g  are respectively the input, output and gain of an operational amplifier on the signal side; u f  

, v f  and α f  are their counterparts on the constraint side. Culhane, Peckerar and Marrian [1] proved the 

stability of the circuit under the two assumptions that : τ τf g<<  and D Dg
T

f  is positive definite. Yan 

[8] showed that the first assumption is not necessary and the second assumption can be relaxed to : 
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where sD  is an eigenvalue of D Dg
T

f . However criterion (1) was derived under the assumption that all 

the eigenvalues sD  are purely real. The main objective of this paper is to generalize the stability condition 

(1) to the case of complex eigenvalues sD  of the matrix product D Dg
T

f , which will be done in section II. 

In section III the results of Yan for the computational speed of the neural net will be correspondingly 

generalized. In section IV an illustrative example will be presented where the matrices Dg  and Df  are 

approximations to the matrix D of the Discrete Hartley Transform in the nonideal case and where the 

eigenvalues sD  of D Dg
T

f  will turn out to be complex thus demonstrating the importance of treating the 

general case of complex eigenvalues presented in this paper. 

II. The Stability Criterion 

 Applying Kirchhoff’s current law at the input node of the i-th amplifier on the constraint side of the 

neural net of Fig. 1, we get : 

C f

du fi
dt R f

u fi
bi D fij

vg jj

N
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=

−
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1
0

1
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The counterpart equation for the signal side is : 
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dugi
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M
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−
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1
0

1
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Using the input-output relation of the operational amplifiers : 

v fi f u fi
= α  (3a) 

vgi gugi
= α  (3b) 

and writing the resulting equations in vector-matrix form, we get the following state space description of 

the neural net : 
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where the square matrix Φ of order (M+N) is given by : 
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In (4) u f  and b are M-dimensional vectors, ug  and a are N-dimensional vectors; and in (5) τ f f fR C=  

and τ g g gR C=  . Using the formula for the determinant of a partitioned matrix [9] : 

A D
C B

A B CA D= − −1  (6a) 

A D
C B

B A DB C= − −1  (6b) 

we get : 
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If M > N, Eq. (7a) implies that the net will have (M - N) poles at : 

s
f

= −
1
τ

 (8) 

and 2N poles at the roots of : 
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On the other hand if N > M, Eq. (7b) implies that the net will have (N - M) poles at : 

s
g

= −
1
τ

 (10) 

and 2M poles at the roots of : 
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Defining : 

sD1
 = an eigenvalue of D Dg

T
f  , sD2

 = an eigenvalue of D Df g
T  , and 
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we find from (9) and (11) that each eigenvalue sD  will result in a pair of poles of the net determined by 

solving the quadratic equation : 
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In the special case of square matrices Dg  and Df  , i.e. when M = N, all poles of the net will be 

determined from (13) where s s sD D D= =
1 2

 since D Dg
T

f  and D Df g
T  will have the same set of 

eigenvalues [9]. 

 The roots of the quadratic equation (13) are given by : 
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 Instead of making the assumption of Yan that sD  is purely real [8], we will treat the general case of 

complex sD  , i.e.  

s x j yD = +   (15) 

Hence 
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z
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We will use the algebraic fact that : 

z j z jr i+ = +  α β  (18) 

where 

( )α 2 2 205= + +. z z zr r i  , (19a) 

( )β 2 2 205= − + +. z z zr r i  (19b) 

and where the signs of α and β may be similar or not as determined by the algebraic identity : 

zi = 2αβ  . (20) 

Since our objective is to investigate the stability of the neural net, we will consider only the real part of the 

poles. From (14),(16),(18) and (19a) we find that : 
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where we only considered positive α since negative α is guaranteed to result in nagative Re(s). The 

stability condition : Re(s) < 0 results in : 
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Using (17a), the above inequality reduces to : 
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Substituting (17a) and (17b) into the above inequality we get after some algebraic manipulation : 
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( ) ( )( )x R R y

R Rf f g g
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This inequality which should be satisfied by the real and imaginary parts of the eigenvalues sD  of (15) of 

the matrix product D Dg
T

f  or D Df g
T  is the sole stability condition for the neural network of Fig. 1. In 

the special case of purely real sD  , the above analytic result reduces to the inequality (1), which is the 

special result obtained earlier by Yan [8]. We should notice that in the general case of complex sD  , the 

stability condition (24) depends on the input capacitances C f  and Cg  through the time constants τ f  and 

τ g  . 

 Yan [8] showed that the neural net of Fig. 1 can be used for approximating the solution of the Least 

Squares Error (LSE) problem, and that the accuracy of the computation is determined by the condition : 

( )( )s
R RD

f f g g
min >>

1
α α

 (25) 

where no assumption of a real sD  was required. Fig. 2 visually depicts the relation between the stability 

condition (24) and the accuracy condition (25). The stable region in the complex plane is enclosed by a 

parabola while the high accuracy region lies outside a circle centered at the origin. The parabola encloses 

the circle and both are tangential at the point : 

( )( )s
R RD

f f g g

= −
1

α α
 . (26) 

In order to attain a high accuracy without violating the stability condition, the eigenvalues sD  must be 

inside the parabola and as far to the right as possible from the circle. 

III. Computational Speed 

 The computational speed of the neural network is determined by its response time which is determined 

by the pole having the smallest magnitude of the real part. For a stable neural net, i.e. one with Re(s) < 0 , 

we find from (21) and (17) that : 
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From (27), we find that : 
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Since some of the poles of the neural net can be at s
f

= −
1
τ

 or s
g

= −
1
τ

 as was found earlier in (8) and 

(10), we conclude that the minimum decay rate is given by : 
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Since x and y are the real and imaginary parts of the eigenvalues sD  of the matrix product D Dg
T

f  or 

D Df g
T , the only way for finding f x y( , ) max  and hence Re( ) mins  and dmin  is by enumeration. 

IV. An Illustrative Example 

 We consider the neural network for computing the Discrete Hartley Transform [1], where in the ideal 

case the elements of the symmetric square connection matrix D are given by : 

D cas ij
Nij =

⎛
⎝⎜

⎞
⎠⎟

2π             i, j =  0 ,  ...  ,  N -  1 (33) 

where 

cas( ) cos( ) sin( )φ φ φ= +  (34) 

The matrices Dg  and Df  are approximations to the ideal matrix D; departure from idealization occurs 

when a neural net is fabricated on an integrated circuit. The elements of Dg  and Df  are obtained from 

those of D through multiplication by the factor [ ]1+ rand ( )ε  where rand ( )ε  is a uniformly distributed 

random number whose value lies in the range : 0 < <rand ( )ε ε  . We have taken N = 8 , Rf = Rg = 103 Ω 

, Cf = 10-15 F , Cg = 10-12 F , αf = αg = 1 . For these values of the parameters the general criterion (24) and 

the special criterion (1) reduce to : 

x y  > − −998 003 102 6.  (35) 

and 
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sD > − −10 6  (36) 

respectively. 

In the ideal case of no perturbation (ε = 0) we have Df = Dg = D and D D Dg
T

f =
2  is a symmetric matrix 

whose eigenvalues are real and equal to N [1]. The corresponding minimum decay rate as determined by 

(32) and (31) is : dmin = 5.005 x 1011 sec-1 . 

In the nonideal case (ε ≠ 0) , the matrices Df  , Dg and D Dg
T

f  are nonsymmetric. For 1 % perturbation (ε 

= 0.01) the computed eigenvalues of D Dg
T

f  are : 

8.0377 , 8.0756 , 8.0928 ± j0.0205 , 8.0700 ± j0.0246 , 8.0794 ±j0.0110 

and the corresponding minimum decay rate is : dmin = 3.6365 x 1011 sec-1 . 

Stability criterion (35) shows that the neural network is still stable although its computational speed (as 

determined by dmin) is lower than that for the ideal case. 

For 4 % perturbation in the values of the elements of matrices Dg  and Df  , the computed eigenvalues of 

the matrix product D Dg
T

f  are : 

8.1512 , 8.3040 , 8.3200 ± j0.0448 , 8.3744 ± j0.0832 , 8.2814 ± j0.0997 . 

Applying stability criterion (35), we find that the neural network becomes unstable because of the last pair 

of complex conjugate eigenvalues. It is true that the eigenvalues are dominated by the real part but the 

stability has been largely affected by the small imaginary part. 

V. Conclusion 

 The stability of a Tank and Hopfield type neural network has been investigated and found to depend 

substantially on the location of the eigenvalues sD  of the matrix product D Dg
T

f  (or D Df g
T ) where Dg  

and Df  are respectively the interconnection conductance matrices on the signal and constraint sides of the 

neural net. The general case of complex eigenvalues sD  was treated and an analytic expression for 

checking the stability of the neural net was derived thus extending the results of Yan [8] who treated the 

case of purely real eigenvalues sD  . The issues of the computational speed of the neural net and its 

accuracy of computation were also considered. An illustrative example of a neural net for computing the 

Discrete Hartley Transform was presented where the eigenvalues of the matrix product D Dg
T

f  were 

computed to be complex thus demonstrating the significance of treating the general case presented in this 

paper. 
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Figure Captions 

Fig. 1 : A Tank and Hopfield type neural network. 

Fig. 2 : The stability and high accuracy regions. 


