Solution to Final Exam Jure zolo Measurements Ist Elect.
(b) (b)

$$
\begin{aligned}
R_{t} & =\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}}=\frac{1}{\frac{1}{250}+\frac{1}{500}+\frac{1}{375}} \\
& =15-4 \Omega
\end{aligned}
$$

$$
\begin{aligned}
\Delta R_{1} & =0.025 \times 25=6.25 \Omega \\
R_{1} & =250+625=256.25 \Omega
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
& \Delta R_{2}=-0.036 \times 500=18 \Omega \\
& R_{2}=500-18=482 \Omega \\
& \Delta R_{3}=0.014 \times 375=5.25 \Omega \\
& R_{3}=375+5.25=380.25 \Omega
\end{aligned}
$$

Thasefore:

$$
\begin{aligned}
& R_{t}=\frac{1}{\frac{1}{25.6 .25}+\frac{1}{482}+\frac{1}{380.25}}=116.3 \Omega \\
& \frac{\Delta R_{t}}{R_{t}}-\frac{116.3-115.4}{115.4}=0.00776
\end{aligned}
$$

(2) (a) Reduce the astual cirmit to an equivatent Thevenin's.

$$
V_{t \hbar}=V_{0 c}=10-\frac{10}{1000+1000} \times 1000=5 V
$$

$$
Z_{t h}=\frac{1000 \times 1000}{1000+1000}+500=1000 \Omega
$$

When the ammater is int roduced, then measwed Zn value is

$$
\begin{aligned}
I_{t} & =\frac{v_{t h}}{z_{t h}+z_{L}}=\frac{5}{1000+100}=4.55 m A \\
E_{\text {rror }} & =\frac{4.55-5}{9 \%} \times 100=-9 \%
\end{aligned}
$$

Accuracy of measurement $=100-9=9 \% \%$
(b) The total shunt resistance $R_{\text {sh }}$ is:

$$
R_{s h}=\frac{R_{m}}{n-1}=\frac{1 \times 10^{3}}{100-1}=\frac{1000}{99}=10.1 \Omega
$$

This is $R_{s h}$ for the comA range.
When the meter is set on the loo-mA range

$$
R_{b}+R_{c}=\frac{I_{m}\left(R_{s h}+R_{m}\right)}{I_{2}}=\frac{100 \times 10^{-6} \times\left(10.1+1 \times 10_{0}^{3}\right)}{100 \times 10^{3}}=1.01 \Omega
$$

The resistance R_{c}, which provides the shunt resistance on the 1-A range is:

$$
\begin{aligned}
R_{c} & =\frac{I_{m}\left(R_{s h}+R_{m}\right)}{I_{3}} \\
& =\frac{100 \times 10^{6} \times\left(10.1+1 \times 10^{3}\right)}{1}=0.101 \Omega \\
\therefore R_{b} & =\left(R_{b}+R_{c}\right)-R_{c}=1.01-0101=0.909 \Omega \\
R_{a} & =R_{s h}-\left(R_{b}+R_{c}\right) \\
& =10.1-(0.909+0.101)=9.09 \Omega
\end{aligned}
$$

check:

$$
\begin{aligned}
R_{s h} & =R_{a}+R_{b}+R_{e} \\
& =9.09+0.909+0.101=10.1 \Omega
\end{aligned}
$$

(3) (b) To Calculate $V_{t h}$

$$
\begin{aligned}
V_{t h} & =E\left(\frac{R_{3}}{R_{3}+R_{1}}-\frac{R_{4}}{R_{4}+R_{2}}\right) \\
& =6 \times\left(\frac{3.5}{3.5+1}-\frac{7.5}{7.5+1.6}\right) \\
& =6 \times(0.778-0.824)=0.276 \mathrm{~V}
\end{aligned}
$$

Ta Culture $R_{t h}$:

$$
\begin{aligned}
R_{t h} & =\frac{R_{1} R_{3}}{R_{1}+R_{3}}+\frac{R_{2} R_{4}}{R_{2}+R_{4}} \\
& =\frac{1 \times 3.5}{1+3.5}+\frac{1.6 \times 7.5}{1.6+7.5}=2.097 \mathrm{k} \Omega \\
I_{g} & =\frac{U_{t h}}{R_{t h}+R_{g}}=\frac{0.276}{2.09710^{2}+200}=120 \mu \mathrm{~A}
\end{aligned}
$$

Deflection of the galvanometer θ

$$
\theta=S^{\prime} \times I_{y}=1 \times 120=120 \mathrm{~mm}
$$

Sensitivity of bridge $=\frac{\theta}{D R}$
R_{4} fox balanced condition $=\frac{1.6 \times 3.5}{1}=5.6$

$$
\begin{aligned}
& \Delta R=7.5-5.6=1.9 \mathrm{k} \Omega \\
& \therefore \text { Sensitivity }=\frac{120}{1.9}=63.16 \mathrm{~mm} / \mathrm{k} \Omega
\end{aligned}
$$

(4) (b) Reduce the circuit to its Thevenin's equivalent

$$
\begin{aligned}
& V_{t h}=100 \times \frac{200}{400}=50 \mathrm{~V} \\
& R_{\text {th }}=\frac{200 \times 200}{200+200}=100 k \Omega
\end{aligned}
$$

Voltage appearing under loading conditions E is

$$
\begin{aligned}
E & =\frac{50}{(100+1000) \times 10^{3}}=45 \\
\text { Loading error } & =\frac{45.45-50}{50} \times 100=-9.1 \% \\
& =9100 \\
\text { Accuracy } & =100-91=90.9 \%
\end{aligned}
$$

(c) The equivalent resistance of the voltmeter on its 50 V sale is

$$
R_{V}=100 \times 50=5 k \Omega
$$

Let $R_{\rho}=$ the parallel resistance of R_{x} and R_{v}

Then

$$
\begin{aligned}
& R_{p}=\frac{V_{p}}{V_{s}} \times R_{5}=\frac{4.65}{95.35} \times 100=4.878 k \Omega \\
& R_{x}=\frac{R_{p} \times R_{v}}{R_{v}-R_{p}}=\frac{4.878 \times 5}{0.122}=200 \mathrm{k} \Omega
\end{aligned}
$$

