Fayoum University
Faculty of Engineering
First Year - Department of Electrical Engineering
First-Term Exam in Physics(2)
Allowed Time: 3 hours
Wednesday $20^{\text {th }}$ January, 2010

تـعليمات الإختبار:
ا ـ لاتستخدم القلم الرصاص في حل المسائل و يستخدم فقط في تظليل الإجابة r r ب لن يلتفت لأي سؤال يحتوي على أكثر من إجابة وكنلك لن يلتفت لأي مسألة لايوجد لها حل في كراسة الإجابة

Question (1):

1	The velocity " V " of a body that executes a SHM is given by			
	$V=f \lambda$	$V=\omega\left(A^{2}-X^{2}\right)^{1 / 2}$	$V=\omega A$	$V=\omega\left(X^{2}-A^{2}\right)^{1 / 2}$
r	A body executes a SHM if its acceleration "a"			
	$a=\omega^{2} X$	$a=$ constant	$a=-\omega^{2} X$	None of these
r	A body is executing a SHM, when its displacement is X, its kinetic energy is			
	(k/2) $\left(X^{2}-A^{2}\right)$	(k/2) X^{2}	(k/2)($\left.A^{2}-X^{2}\right)$	(k/2) A^{2}
4	迷 $\omega^{2} X=F_{0} \sin (\Omega t+\phi)$, this equation describes			
	SHM ${ }^{\text {S }}$ Fre	俍ped Osc.	Forced oscillation U	Undamped-forced Osc.
5	In an undamped forced (mass-spring) oscillator, where $k=80 \mathrm{~N} / \mathrm{m}$ and $m=0.2 \mathrm{~kg}$, the mass is subjected to a harmonic force $F=\sin (\Omega t)$. The resonant frequency is equal to			
	$\Omega_{\text {res }}=35 \mathrm{rad}$	$\Omega_{\text {res }}=400 \mathrm{rad}$	$\Omega_{\text {res }}=20 \mathrm{rad}$	$\Omega_{\text {res }}=40 \mathrm{rad}$
6	In an undamped forced (mass-spring) oscillator, where $k=80 \mathrm{~N} / \mathrm{m}$ and $\mathrm{m}=0.2 \mathrm{~kg}$, the mass is subjected to a harmonic force $F=\sin (\Omega t)$. The static amplitude is equal to			
	$A_{\text {st }}=0.029 \mathrm{~m}$	$A_{\text {st }}=0.05 \mathrm{~m}$	$A_{\text {st }}=0.025 \mathrm{~m}$	$A_{s t}=0.04 \mathrm{~m}$
7	Two sinusoidal waves, $y_{1}=\sin \left(\omega t+\Phi_{1}\right)$ and $y_{2}=\sin \left(\omega t+\Phi_{2}\right)$ are superimposed. The resultant amplitude is maximum when $\left(\Phi_{2}-\Phi_{1}\right)=\ldots$			
	π	2π	$\pi / 2$	$\pi / 4$
8	The distance between two successive nodes of a standing wave is,			
	λ	$\lambda / 4$	$\lambda / 2$	3 $2 / 2$
9	When light enters into a denser medium, its frequency			
	increases	decreases	Remains unchanged	None of these
10	A pipe open at both ends resonates at a fundamental frequency $f_{\text {open }}$. When one end is closed and the pipe is again made to resonate, the fundamental frequency is $f_{\text {closed. }}$. Which of the following expressions is correct?			
	$f_{\text {closed }}=f_{\text {open }}$	$\mathrm{f}_{\text {closed }}=\mathrm{f}_{\text {open }} / \mathbf{2}$	$f_{\text {closed }}=2 \mathrm{f}_{\text {open }}$	$\boldsymbol{f}_{\text {closed }}=\mathbf{3} \mathbf{f}_{\text {open }} / \mathbf{2}$

11	Two identical machines are positioned the same distance from an observer. The intensity of sound delivered by each machine at the location of the observer is $2.0 * 10^{-7} \mathrm{~W} / \mathrm{m}^{2}$. Find the sound level heard by the observer when both machines are operating			
	53 db	56 db	35 db	65 db
12	A sound source ($f_{0}=300 \mathrm{~Hz}$) is moving away from an observer at a speed equals to that of the sound waves. The apparent frequency f, heard by the observer			
	450 Hz	300 Hz	150 Hz	None of these
13	A observer is approaching a sound source with an increasing velocity, the apparent frequency heard by the observer is			
	increasing	decreasing	Remains unchanged	None of thes
14	The difference between two sound levels (in db) $\left(\Delta \beta=\beta_{1}-\beta_{2}\right)$ of a sound source related to the ratio of intensities I_{1} and I_{2} is given by			
	$\Delta \beta=20 \log \left(I_{1} / I_{2}\right)$	$\Delta \beta=10 \log \left(I_{1} / I_{2}\right)$	$\Delta \beta=20 \log \left(I_{2} / I_{1}\right)$	$\Delta \beta=10 \log \left(I_{2} / I_{1}\right)$
15	When a monochromatic light hits a piece of glass at an angle, which of the following will not occur?			
	Reflection	refraction	Dispersion	All of them
16	A certain kind of glass has an index of refraction of 1.65 for blue light and an index of refraction of 1.161 for red light. If a a beam of white light (containing all colors) is incident at an angle of 30', what is the angle between the red and blue light inside the glass?.			
	0.22	0.45	1.90	1.81
17	A convex mirror shows an image of an object that is 3.0 m from the mirror. The focal length of the mirror is 0.25 m , find the image location (q) and the magnification (M)			
	-0.23m, +0.077	3.67m, -1.22	$3.67 \mathrm{~m}, 0.077$	0.23m, -0.077
18	In a double-slits interference experiment where ($D=1.2 \mathrm{~m}$, and $d=0.03 \mathrm{~mm}$), the second order bright fringe is $0.045 m$ from the center of the screen. Find the wave length λ			
	560 nm	450 nm	650 nm	600 nm
19	A light is containing two lines of wavelengths ($\lambda_{1}=589 \mathrm{~nm}$, and $\lambda_{2}=589.59 \mathrm{~nm}$), what a resolving power must a grating have if these wavelengths are to be resolved?			
	R=999	$R=1100$	$R=950$	900
20	The critical angle for sapphire surrounded by air is 34.4^{0}. Calculate the polarizing angle for sapphire			
	$60.53{ }^{\circ}$	$55.4{ }^{0}$	30^{0}	$56.4{ }^{0}$

Question (2):

21	Solar cells are often coated with a transparent, thin film of silicon dioxide $\left(\mathrm{SiO}_{2}\right)$ of refractive index $n=1.45$, to minimize the reflective losses. What is minimum thickness of SiO_{2} layer in order to have destructive interference for $\lambda=550 \mathrm{~nm}$				
	94.8 nm	39.28 nm	189.7 nm	78.57nm	
22	Two narrow parallel slits separated by 0.85 mm are illuminated by 600 nm light an viewing screen is 2.80 m away from the slits.				
	(a) What is the phase difference (δ) between the two interfering waves on the screen a a point 2.50 mm from the central bright fringe?				
	7.95 rad	π	3.5 rad	$\pi / 2$	
	(b) The ratio of light intensity (I) at any point within a bright fringe to the intensity at the center of the bright fringe $\left(l_{0}\right)$ is given by				
	$\boldsymbol{\operatorname { s i n }}(\delta / 2)$	$\operatorname{Cos}^{2}(\delta / 2)$	$\boldsymbol{s i n}^{2}(\delta / 2)$	$\operatorname{Cot}^{2}(\delta / 2)$	
	(b) What is the ratio of the intensity at this point to the intensity at the central brigh fringe				
	0.853	0.768	0.453	0.65	
23	A diffraction grating of width 4.0 cm has ruled with 3000 rulings/cm. (a) What is th resolving power of this grating in the third order				
	12000	36000	9000	18000	
	(b) If two monochromatic waves are incident on this grating have mean wavelength $\lambda=400 \mathrm{~nm}$. What is their wavelength separation if they are jus resolved in third order				
	0.011 nm	0.11 nm	1.1nm	11.0nm	
2	Three parallel polarizing sheets whose polarizing axes make angle θ_{1}, θ_{2}, and θ_{3} with the vertical direction as shown in figure. A plane polarized plane wave whose direction of polarization is				
3					

Good Luck
Dr. Maged Kassab

Fayoum University
Faculty of Engineering
First Year - Department of Electrical Engineering
First-Term Exam in Physics(2)
Allowed Time: 3 hours
Wednesday $20^{\text {th }}$ January, 2010

تـعليمات الإختبار:
ا ـ لاتستخدم القلم الرصاص في حل المسائل و يستخدم فقط في تظليل الإجابة r r ب لن يلتفت لأي سؤال يحتوي على أكثر من إجابة وكنلك لن يلتفت لأي مسألة لايوجد لها حل في كراسة الإجابة

Question (1):

11	Two identical machines are positioned the same distance from an observer. The intensity of sound delivered by each machine at the location of the observer is $2.0^{* 10} 0^{-7} \mathrm{~W} / \mathrm{m}^{2}$. Find the sound level heard by the observer when both machines are operating			
	53 db	56 db	35 db	65 db
12	A sound source ($f_{0}=300 \mathrm{~Hz}$) is moving away from an observer at a speed equals to that of the sound waves. The apparent frequency f, heard by the observer			
	450 Hz	300 Hz	150 Hz	None of the
13	A observer is approaching a sound source with an increasing velocity, the apparent frequency heard by the observer is			
	increasing	decreasing	Remains unchanged	None of these
14	The difference between two sound levels (in db$)\left(\Delta \beta=\beta_{1}-\beta_{2}\right)$ of a sound source related to the ratio of intensities I_{1} and I_{2} is given by			
	$\Delta \beta=20 \log \left(I_{1} / I_{2}\right)$	$\Delta \beta=10 \log \left(I_{1} / I_{2}\right)$	$\Delta \beta=20 \log \left(I_{2} / l_{1}\right)$	$\Delta \beta=10 \log \left(I_{2} / I_{1}\right)$
15	When a monochromatic light hits a piece of glass at an angle, which of the following will not occur?			
	Reflection	refraction	Dispersion	All of them
16	A certain kind of glass has an index of refraction of 1.65 for blue light and an index of refraction of 1.161 for red light. If a a beam of white light (containing all colors) is incident at an angle of 30°, what is the angle between the red and blue light inside the glass?.			
	$0.22{ }^{\circ}$	$0.45{ }^{\circ}$	1.90°	$1.81{ }^{\circ}$
17	A convex mirror shows an image of an object that is 3.0 m from the mirror. The focal length of the mirror is 0.25 m , find the image location (q) and the magnification (M)			
	-0.23m, +0.077	$3.67 \mathrm{~m},-1.22$	$3.67 \mathrm{~m}, 0.077$	0.23m, -0.077
18	In a double-slits interference experiment where ($D=1.2 \mathrm{~m}$, and $d=0.03 \mathrm{~mm}$), the second order bright fringe is $\mathbf{0 . 0 4 5 m}$ from the center of the screen. Find the wave length λ			
	563 nm	450 nm	650 nm	600 nm
19	A light is containing two lines of wavelengths ($\lambda_{1}=589 \mathrm{~nm}$, and $\lambda_{2}=589.59 \mathrm{~nm}$), what a resolving power must a grating have if these wavelengths are to be resolved?			
	R=999	$R=1100$	R=950	900
20	The critical angle for sapphire surrounded by air is 34.4^{0}. Calculate the polarizing angle for sapphire			
	$60.53{ }^{\circ}$	$55.4{ }^{0}$	30°	$56.4{ }^{0}$

Question (2):

Good Luck
Dr. Maged Kassab

