Fayoum University

Engineering Mathematics (2A) Final Exam.

Faculty of Engincering

First Year Electrical Eng. Department Jan., 16, 2010

Attempt All Questions: Total Mark $=85$
Q1. (a) Find $\lim _{(x, y) \rightarrow(0,2)} \frac{\sin (x y)}{x}$
Time Allowed: 3 Hours
(b) Find partial derivatives of the function and its fotal differential $\mathbf{u}=\mathbf{x}^{\mathbf{v}}$
(c) Find the interval of eonvergent of the series $\sum_{n=1 n\left(2^{n}\right)}^{\infty}(x+5)^{n}$

Q2. (a) Find the absolute maximum and minimum of the
function $f(x, y)=x^{2}-y^{2}$ on the closed circle $x^{2}+y^{2} \leq 1$
(b) Find the points on the paraboloid $z=\frac{x^{2}}{25}+\frac{y^{2}}{4}$ that is closed to the point (0.5.0).
(c) Find the value of the integral $\frac{\cosh }{} x^{2} d x$ approximately up to 4 d.p.

Q3. (a) Find the center of the mass of the region bounded by the curves $y=\sec x$. $y=1 / 2, x=-\pi / 4$ and $x-\pi / 4$, where the density at any point $(x, y)=2 s$ ((b) Evaluate the integral $\int\left(x^{2}+2 y^{2}\right) d x d y$, where R is the region bounded by the curves $x y=1, x y=2, \quad y=|x|$ and $y=2 x$.

Q4. (a) Find the surface area of the region cut from the upper half of the sphere $x^{2}+y^{2}$ $+z^{2}=9$ by the cylinder $x^{2}+y^{2}=9$.
(b) Evaluate $\iint \mathbf{F} \bullet \mathbf{n} d S$, where $\mathbf{F}=\left(6 x^{2}+2 x y\right) \mathbf{i}+\left(2 y+x^{2} z\right) \mathbf{j}+4 x^{2} y^{3} \mathbf{k}$, S and S is the solid in the first octant bounded by the coordinate planes and the cylinder $x^{2}+y^{2}=4$ and the plane $z=4$.

Q5. (a) Evaluate $\left.\oint\left(x^{4}+4\right) d x+x y d y\right] ; C$ is the cardioid $r=1+\cos \theta$.

$$
(1, \pi / 2)
$$

(b) Evaluate $e^{x}[\sin y d x+\cos y d y \mid$, where C is the curve $x=\sin y$. $(0,0)$

Model Answer of Mathematics 2 (a) Exam (23-1-2010)

First Year of Electrical Engineering Department

Q1 (a) $\lim _{(x, y) \rightarrow(0,2)} \frac{\sin (x y)}{y}$
$\lim _{(x, y) \rightarrow(0,2)} \frac{\sin (x y)}{x}=\frac{0}{0}$,
Let the general path $y=x f(x)+2$, for any arbitrary function $f(x)$

$$
\begin{aligned}
\therefore \lim _{(x, y) \rightarrow(0,2)} \frac{\sin (x y)}{x} & =\lim _{x \rightarrow 0} \frac{\sin \left(x^{2} f(x)+2 x\right)}{x}=\frac{0}{0} \\
& =\lim _{x \rightarrow 0}\left[(x f(x)+2) \frac{\sin \left(x^{2} f(x)+2 x\right)}{x(x f(x)+2)}\right] \\
& =\lim _{x \rightarrow 0}(x f(x)+2) \lim _{x(x f(x)+2) \rightarrow 0} \frac{\sin \left(x^{2} f(x)+2 x\right)}{x^{2} f(x)+2 x}=(2)(1)=2
\end{aligned}
$$

Q1 (b) $u=x^{y z}$,
$\frac{\partial u}{\partial x}=y z(x)^{y z-1} \rightarrow$ since y and z are constants, $\frac{\partial u}{\partial y}=z(x)^{y z} \ln x \rightarrow$ since x and z are constants, $\frac{\partial u}{\partial z}=y(x)^{y z} \ln x \rightarrow$ since x and y are constants,
$d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y+\frac{\partial u}{\partial z} d z=y z(x)^{y z-1} d x+z(x)^{y z} \ln x d y+y(x)^{y z} \ln x d z$

Q1 (c)

$$
\begin{gathered}
\left.\sum_{n=1}^{\infty} \frac{1}{n\left(2^{n}\right)}(x+5)^{n} \Rightarrow \lim _{\mathrm{n} \rightarrow \infty}\left|\frac{a_{\mathrm{n}+1}}{a_{\mathrm{n}}}\right|=\lim _{\mathrm{n} \rightarrow \infty}\left|\frac{\mathrm{n}\left(2^{\mathrm{n}}\right)(\mathrm{x}+5)^{\mathrm{n}+1}}{(\mathrm{n}+1)\left(2^{\mathrm{n}+1}\right)(\mathrm{x}+5)^{n}}\right|=\frac{1}{2} \lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{n}(\mathrm{x}+5)}{(\mathrm{n}+1)} \right\rvert\, \\
\left.\quad=\frac{1}{2}\left|(x+5) \lim _{\mathrm{n} \rightarrow \infty} \frac{n}{(\mathrm{n}+1)}=\frac{1}{2}\right|(x+5) \right\rvert\,<1 \text { for convergent } \Rightarrow-7<x<-3 .
\end{gathered}
$$

For $\mathrm{x}=-7$, we get the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n} \Rightarrow$ conditionally converegent,
For $\mathrm{x}=-3$, we get the series $\sum_{n=1}^{\infty} \frac{1}{n} \Rightarrow$ the series is divergent, then the interval for convergent is $[-7,-3[$, i.e. $-7 \leq x<-3$.

Q2 (a).
$f_{x}=2 x=0 \Rightarrow x=0, \quad f_{y}=-2 y=0 \Rightarrow y=0$,
The point $(0,0)$ is a critical point and $f(0,0)=0$.
The points on the boundary (circle) are $(0, \pm 1),(\pm 1,0)$, then $f(0, \pm 1)=-1$ and $f(\pm 1,0)=1$,
therefore, the two points $(0, \pm 1)$ are absolute minmum and the two points ($\pm 1,0$) are absolute maximum.

Q2 (b).

$$
\begin{aligned}
& g(x, y, z)=z-\frac{x^{2}}{25}-\frac{y^{2}}{4}=0, f(x, y, z)=d^{2}=x^{2}+(y-5)^{2}+z^{2} \\
& \because \frac{f_{x}}{g_{x}}=\frac{f_{y}}{g_{y}}=\frac{f_{z}}{g_{z}}=\lambda \rightarrow \text { Lagrange Multiplier, } \\
& \therefore \frac{2 x}{(-2 x / 25)}=\frac{2(y-5)}{(-y / 2)}=\frac{2 z}{1}=\lambda
\end{aligned}
$$

For solution, $x=0,-y z=2 y-10$, or $y=10 /(z+2)$

$$
\therefore z=\frac{100}{4(z+2)^{2}} \Rightarrow z(z+2)^{2}=25 \Rightarrow z^{3}+4 z^{2}+4 z-25=0 .
$$

$\therefore z \approx 1.77$ and $y= \pm 2.66$, then the rquired point is $(0,2.66,1.77)$.
Q2(c).

$$
\begin{aligned}
& \begin{aligned}
\int_{0}^{1} \cosh x^{2} d x & =\int_{0}^{1} \sum_{n=0}^{\infty} \frac{\left(x^{2}\right)^{2 n}}{2 n!} d x=\sum_{n=0}^{\infty} \int_{0}^{1} \frac{\left(x^{2}\right)^{2 n}}{2 n!} d x \\
& =\left.\sum_{n=0}^{\infty} \frac{x^{4 n+1}}{2 n!(4 n+1)}\right|_{0} ^{1}=\sum_{n=0}^{\infty} \frac{1}{2 n!(4 n+1)}
\end{aligned} \\
& =1+\frac{1}{102}+\frac{1}{(24) 9}+\frac{1}{(6!)(13)}+\ldots=1+0.1+0.00463+0.000107+\ldots \cong 1.10474
\end{aligned}
$$

Q3(a). The density $\sigma=2 y$
$M=\int_{-\pi / 4}^{\pi / 4}\left[\int_{1 / 2}^{\sec x} 2 y d y\right] d x=\int_{-\pi / 4}^{\pi / 4}\left(y^{2}\right)|1 / 2 \cdot| \frac{\sec x}{\sec } d x=\int_{-\pi / 4}^{\pi / 4}\left(\sec ^{2} x-\frac{1}{4}\right) d x=\left.2\left(\tan x-\frac{1}{4} x\right)\right|_{0} ^{\pi / 4}=2\left(1-\frac{\pi}{8}\right.$
$\mathrm{I}_{2}=\int_{-\pi / 4}^{\pi / 4}\left[\int_{1 / 2}^{\sec x} 2 y(y) d y\right] d x=\left.\frac{2}{3} \int_{-\pi / 4}^{\pi / 4}\left(y^{3}\right)\right|_{1 / 2} ^{\sec x} d x=\frac{2}{3} \int_{-\pi / 4}^{\pi / 4}\left(\sec ^{3} x-\frac{1}{8}\right) d x=\frac{4}{3} \int_{0}^{\pi / 4}\left(\sec ^{3} x-\frac{1}{8}\right) d x$
Since the gemetry and the density are symmetric about y -axis, then $\vec{x}=0, \vec{y}=\frac{I_{2}}{M}$
$I=\int_{0}^{\pi / 4} \sec ^{3} x d x=\int_{0}^{\pi / 4} \sec ^{2} x \sec x d x=\left.(\tan x \sec x)\right|_{0} ^{\pi / 4}-\int_{0}^{\pi / 4} \tan x(\sec x \tan x) d x=$
$=\sqrt{2}-\int_{0}^{\pi / 4}\left(\sec ^{3} x-\sec x\right) d x$
$\therefore 2 I=\sqrt{2}+\int_{0}^{\pi / 4} \sec x d x=\sqrt{2}+\left(\left.\ln (\sec x+\tan x)\right|_{0} ^{\pi / 4}=\sqrt{2}+\ln (\sqrt{2}+1) \rightarrow I=\frac{\sqrt{2}+\ln (\sqrt{2}+1)}{2}\right.$
$\therefore I_{2}=\frac{4}{3}\left[\left(\frac{\sqrt{2}+\ln (\sqrt{2}+1)}{2}\right)-\frac{\pi}{32}\right) \cong 1.4 \rightarrow \bar{y}=\frac{I_{2}}{M} \cong 0.87$
Q3 (b).
Let $u=x y$ and $v=y / x$,

$$
\Delta=\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial x}
\end{array}\right|=\left|\begin{array}{cc}
y & x \\
-\frac{y}{x^{2}} & \frac{1}{x}
\end{array}\right|=2 \frac{y}{x}=2 v, \therefore J=\frac{1}{\Delta}=\frac{1}{2 v}
$$

$$
I=\int_{11}^{2} \int_{2}^{2} \frac{1}{2 v}\left(\frac{u}{v}+2 u v\right) d u d v=\frac{1}{2} \int_{11}^{2} \int_{1}^{2}\left(\frac{u}{v^{2}}+2 u\right) d u d v=\left.\frac{1}{2} \int_{1}^{2}\left(\frac{u^{2}}{2 v^{2}}+u^{2}\right)\right|_{1} ^{2} d v
$$

$$
=\frac{1}{2} \int_{1}^{2}\left(\frac{3}{2} v^{-2}+3\right) d v=\left.\frac{1}{2}\left(-\frac{3}{2 v}+3 v\right)\right|_{1} ^{2}=\frac{1}{2}\left[\left(-\frac{3}{4}+6\right)-\left(-\frac{3}{2}+3\right)\right]=\frac{15}{8}
$$

Q4 (a)

$$
\begin{aligned}
& \because F(x, y, z)=x^{2}+y^{2}+z^{2}-9=0, \\
& \therefore \mathbf{n}=\frac{x}{3} \mathrm{i}+\frac{y}{3} \mathrm{j}+\frac{z}{3} \mathrm{k}, \\
& S=\iint_{R_{x y}} \frac{3}{z} d A=\int_{0}^{2} \int_{0}^{3} \frac{3}{\sqrt{9-r^{2}}} r d r d \theta=18 \pi .
\end{aligned}
$$

Q4 (b).

$\iint_{S}(\mathbf{F} \bullet \mathbf{n}) d S=\iiint_{R}(\nabla \bullet \mathbf{F}) d V$

$$
\begin{aligned}
& =\iiint_{\mathrm{R}_{\mathrm{xyz}}}(12 x+2 y+2) d V=2 \int_{0}^{2 \pi} \int_{0}^{3} \int_{0}^{4}(6 r \cos \theta+ \\
& =8 \int_{0}^{2 \pi} \int_{0}^{3}\left(6 r^{2} \cos \theta+r^{2} \sin \theta+r\right) d r d \theta=72 \pi .
\end{aligned}
$$

Q5 (a).

$$
\begin{aligned}
& I=\int_{C} y^{2}\left(x^{2}+4\right) d x+x y d y \\
& =\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A=\iint_{R}(y) d A \Rightarrow \text { using polar coordinates } \\
& \therefore I=\int_{0}^{2 \pi} \int_{0}^{1+\cos \theta} r^{2} \sin \theta d r d \theta=\left.\int_{0}^{2 \pi}\left(\frac{r^{3}}{3}\right)\right|_{0} ^{1+\cos \theta} \sin \theta d \theta \\
& =\frac{1}{3} \int_{0}^{2 \pi}(1+\cos \theta)^{3} \sin \theta d \theta=-\frac{1}{12}(1+\cos \theta)^{4} \int_{0}^{2 \pi}=0 .
\end{aligned}
$$

Q5(b).

$$
I=\int_{(0,0)}^{(1, \pi / 2)} e^{x} \sin y d x+e^{x} \cos y d y, \because \frac{\partial P}{\partial y}=e^{x} \cos y, \frac{\partial Q}{\partial x}=e^{x} \cos y,
$$

Since, $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$, and are continuous, then The line integral is path independent, then $\mathrm{I}=\int_{C_{1}} e^{x} \sin y d x+e^{x} \cos y d y+\int_{C_{2}} e^{x} \sin y d x+e^{x} \cos y d y$ $C_{1}: y=0, x \rightarrow 0$ to $1, C_{2}: x=1, y \rightarrow 0$ to $\pi / 2$, $\mathrm{I}=0+\int_{0}^{\pi / 2} e(\cos y) d y=\left.e(\sin y)\right|_{0} ^{\pi / 2}=e$.

Q5(c).
Volume $=V=\iint_{R_{x y}}^{8-x^{2}-y^{2}} \iint_{x^{2}+3 y^{2}}^{2} d z d A=\iint_{R_{x y}}\left(8-2 x^{2}-4 y^{2}\right) d A$,
where $R_{x y}$ is the elipose given by $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$
Using the transformation $x=2 r \cos \theta, y=\sqrt{2} r \sin \theta$

$$
\begin{aligned}
& J= \frac{\partial(x, y)}{\partial(r, \theta)}=2 \sqrt{2} r \\
& \begin{aligned}
\therefore V & =2 \sqrt{2} \int_{0}^{2 \pi} \int_{0}^{1}\left(8-8 r^{2} \cos ^{2} \theta-8 r^{2} \sin ^{2} \theta\right) r d r d \theta \\
& =16 \sqrt{2} \int_{0}^{2 \pi} \int\left(1-r^{2}\right) r d r d \theta=\left.16 \sqrt{2}\left(\frac{r^{2}}{2}-\frac{r^{4}}{4}\right)\right|_{0} ^{1}(2 \pi)=8 \sqrt{2} \pi .
\end{aligned}
\end{aligned}
$$

