رابعة هندسة صناعية – لائحة جديدة

Fayoum Univ. Faculty of Eng Dept. of Industrial Eng. Final Exam Maintenance Planning Time Allowed: 3hour 12/ 6/ 2010

Assume any missing data

Please attempt all questions. No. of Questions: 4 No. of pages: 4

Q1: (30 Marks)

- Tick (√) or (X) in front of the following:

 A vibrometer measures vibration displacement.
 Accelerometers can not measure high frequency vibrations.
 Vibrometer has relatively a small mass.
 An accelerometer has relatively a large mass.
 - 4. An accelerometer has relatively a large mass. (2 Marks)
 5. Error in the measured vibration depends on vibration frequency. (2 Marks)
 - 2. The line diagram of a pumping system (feed-water pump) is as shown in Fig. 1. Find the possible vibration frequencies for the following machinery faults:-
 - Unbalance in motor and pump.
 Misalignment of motor and gear box shafts
 bearing 3 outer race if it is a ball bearing having:

 Number of ball=10, ball diameter =5 mm
 Pitch circle diameter = 50mm, Angle, β = 0
 (5 Marks)
 - 4. Bearing 4 problem (journal bearing)

(5 Marks)

(2 Marks)

(2 Marks)

(2 Marks)

	8		
Nature of fault	Frequency of Dominant Vibration		
	(Hz=rpm/60)		
Rotating members out of balance	1 * rpm		
Misalignment &	(1 to 2) * rpm		
Bent shaft			
	Impact rates for the individual bearing		
Damaged rolling	component. *		
Elements bearing			
(ball, roller, etc.)	Vibration at high frequencies		
	(2 to 60 kHz)		
Journal bearings	(1/2 to 1/3) rpm		
loose in housing			
Oil film whirl or	Slightly less than half shaft speed (42 to		
Whip in Journal bearings	48%)		
Mechanical looseness	2 * rpm		

Vibration Trouble Shooting Chart

Figure 1

Q2: (20 Marks)

- a) Discuss briefly reliability, availability and maintainability (RAM). Then give example. (4 Marks)
- b) M/s Escorts Limited manufactures a wide range of products like, tractors, cranes, excavators, loaders, motorcycles, piston assemblies, automotive and railway shock absorbers, railway brakes, couplers telecommunication equipment. At one of its plant at Bahadurgarh (Pb) (Escorts Mahle Ltd) the company is engaged in producing TATA 92 - Shim Type Pistons . Using machines namely, KD2, M8, FD1, EA2, for seat machining, Grooving, diamond turning and pin hole boring of piston.

Machines	Failure rate	Maintenance time	MTTR
	(1/h)	t (h)	(h)
KD2	0.00611	5.250	2.71
M8	0.00611	1.916	1.29
FD1	0.00574	3.416	3.19
EA2	0.006294	5	1.62

Requirements:

- 1. The mean-time between failure for each machine (MTBF). (4 Marks)
- **2.** Reliability (R) for each machine. (4 Marks)
- **3.** Availability for each machine. (4 Marks) (4 Marks)
- 4. Maintainability for each machine.

Q3: (20 Marks) The annual maintenance works report for a maintenance project in chemical process company is as follows:

No.	Description	Туре	Year 2008	Year 2009
1	Maintenance manpower	Engineers	16000	15000
	(Man-hours)	Tech. &Helpers	31000	31000
2	Actual PM	No. of W/O	5000	7000
		Man Hours	12000	14000
		Duration (Hrs)	4000	5000
		Back Log	650	600
3	Actual CM	No. of W/O	600	800
		Man Hours	5000	6000
		Duration (Hrs)	500	3000
		Back Log	50	70
4	Total cost (1000 LE)	Planned	3500	3500
		Actual	4200	4500
5	Revenue (1000 LE)	Planned	5000	5000
		Actual	6000	7000

Based on these data, determine the different performance evaluation indicators for this project.

Q4: (20 Marks) Overall vibration levels for dryer equipment (large machine with rigid and heavy foundation) in sulphide factory according ISO standard 10816 are as follows:-

Point name	Vibration Measurements	Units
Point1	6.299	mm/s
Point2	12.373	mm/s
Point3	15.407	mm/s
Point4	7.15	mm/s
Point5	5.71	mm/s
Point6	11.481	mm/s
Point7	10.717	mm/s
Point8	3.268	mm/s
Point9	11.59	mm/s
Point10	8.369	mm/s
Point11	6.77	mm/s
Point12	5.504	mm/s

Fig. 2

ISO 10816

Based on these data , discuses the fault detection & diagnosis for dryer machine made by vibration analysis.

Good Luck Dr. Islam H.

Model Answer

Q1: (30 Marks)

a)		
1.	A vibrometer measures vibration displacement. $(\sqrt{)}$	(2 Marks)
2.	Accelerometers can not measure high frequency vibrations. (X)	(2 Marks)
3.	Vibrometer has relatively a small mass.(X)	(2 Marks)
4.	An accelerometer has relatively a large mass. (X)	(2 Marks)
5.	Error in the measured vibration depends on vibration frequency. ($$)	(2 Marks)

b)

Pump 180 rpm, Gearbox Ratio 1:10

N1 = ? N2= 180 Z1/Z2 = 10/1

Speed ratio = N1 / N2 = Z1 / Z2

N1/180 = 10 / 1 N1 = 180 rpm

From fault diagnosis table,

The frequency of vibration due to unbalance in motor

= 1 * rpm = 1800 rpm = 1800/60 = 30 Hz

The frequency of vibration due to unbalance in pump

= 1 * rpm = 180 rpm = 180/60 = 3 Hz

2- Misalignment of motor and gear shafts. (5Marks)

The frequency misalignment of motor:

= (1 to 2) * rpm = (1 to 2) * 1800 rpm

From (30 to 60) Hz

The frequency misalignment of gear shifts:

= (1 to 2) * rpm = (1 to 2) * 180 rpm

From (3 to 6) Hz.

3- Bearing 3 outer race: (5 Marks)

if it is a ball bearing having

n = number of balls 10,

Bd = ball diameter 5 mm,

Pd = Pitch circle diameter 50 mm,

 β = Angle =0.

The frequency of vibration due to outer race defect:

= (n/2) (rpm/60) (1 – (Bd/Pd) cos β = (10/2) (180/60) (1 – (5/50) cos 0 = 5 * 3 * 0.9 = 13.5 Hz

4- Bearing 4 problems (journal bearing). (5 Marks)

The frequency of vibration due to journal bearing loose in housing:

= (1/2 to 1/3) rpm

rpm: rev/min of pump shaft = 180

The frequency of vibration due to journal bearing loose in housing: = (1/2 to 1/3) 180/60 = (1.5 to 1) Hz

Oil film whirl or whip in Journal bearings: Slightly less than half shaft speed (42 to 48%)

(0.42 to 0.48) 180/60 = (1.26 to 1.44) Hz

Q2 (20 Marks)

a) Reliability is a measure of *the probability for failure-free operation* during a given interval, i.e., it is a measure of success for a failure free operation. It is often expressed as (2 Marks)

$$R(t) = exp(-t/MTBF) = exp(-\lambda t)$$

Maintainability deals with duration of maintenance outages or *how long* it takes to complete (ease and speed) maintenance actions compared to a datum.

$$M(t) = 1 - \exp(-t/MTTR)$$
 (1 Marks)

Availability deals with the duration of available time for operations and is a measure of how often the system is available and well.

A = (Total time – Total downtime) / Total time (1 Marks)

b) (16 Marks)

Machines	Failure	Maintenance	MTTR	MTBF	R	Α	Maint.
	Rate	Time t (h)	(h)	%	%	%	%
	(1/h)						
KD2	0.00611	5.250	2.71	163.63	88.98	98.36	56.4
M8	0.00611	1.916	1.29	163.63	95.7	99.21	52.1
FD1	0.00574	3.416	3.19	174.19	96	98.2	52.3
EA2	0.006294	5	1.62	158.82	95.6	98.9	53.7

Q3: (20Marks)

Performance evaluation for maintenance projects:

KPI	Туре	2008	2009	PE
	No. of W/O	12 %	11.43 %	
1- CM / PM	Man-hours	41.7%	42.8%	
	Duration	12.5%	60%	
	Overall (10-20%)	6.255 %	29.3%	
2- Utilization	(50-60%)	36.2%	43.5%	
3- Quality Rate	(80-90%)	89.3%	89.7%	
4- Reliability	(80-90 %)	70.6%	70%	
5- OCE	(30- 40%)	22.8%	27%	
6- Performance Rate	Planned	294	250	
(L.E / man-hour)	Actual	353	350	

• CM/PM Overall =

(No of WO ratio + man-hours ratio + Duration ratio)/3

• Utilization =

Total Work orders man-hours / Total Available man-hours

• PM Quality Rate = PM efficiency

(No of PM) / (No of PM + No of CM)

• PM Reliability =

(PM man-hours) / (PM man-hours + CM man-hours)

• Overall Craft Effectiveness =

Utilization X Quality Rate X Reliability

• Performance rate =

Revenue / total man-hours.

Q4: (20 Marks)

Point	Vibration	Analysis	Action
name	Measurements		
	Mm/s		
Point1	6.299	Just tolerance	Call of service
Point2	12.373	Not permissible (Dangerous vibration values - damage could occur)	Shut down and corrective action
Point3	15.407	Not permissible (Dangerous vibration values - damage could occur)	Shut down and corrective action

Point4	7.15	Just tolerance	Call of service
Point5	5.71	Just tolerance	Call of service
Point6	11.481	Not permissible	Shut down and
		(Dangerous	corrective action
		vibration values	
		- damage could	
		occur)	
Point7	10.717	Just tolerance	Call of service
Point8	3.268	Allowable	Steady state
Point9	11.59	Not permissible	Shut down and
		(Dangerous	corrective action
		vibration values	
		- damage could	
		occur)	
Point10	8.369	Just tolerance	Call of service
Point11	6.77	Just tolerance	Call of service
Point12	5.504	Just tolerance	Call of service

Recommendation:

- 1. Shutdown for the dryer machine>
- 2. Check list inspection for the dryer machine>
- 3. RCFA for the dryer machine
- 4. Corrective Action.