Faculty of Engineering Industrial Engineering Department

Term Exam $1^{\text {st }}$ year

Machining Processes
Jan. 2010, Time: 3 Hrs

Answer the Following Questions

Question No. (1)

(14 Points)
3 a) Explain with drawing the main elements of the cutting tool turning, its angles and the function of each angle?
; b) The failure of cutting tool can be classified into two categori Explain?
3c) Define the cutting motion and feed motion, and show by drawing t cutting motion and the feed motion in turning, shaping and drilli processes.
3 d) What is the difference between shaping and planning? Give sket for basic geometry of shaping and planning?
4 e) A slab milling operation is being carried out on a $30-\mathrm{in}$.-long, $10-\mathrm{ii}$ wide high strength steel block at a feed of $0.02-\mathrm{in}$. /tooth and a dep of cut of 0.2 -in the cutter has a diameter of 3.5 -in., has eight straig cutting teeth, rotates at 150 rpm , and the cutting force 125 Calculate MRR, CT, the power required (at the spindle), the speci horse power, and the horse power for the motor.
(Note: The efficiency of the motor 80% and $\mathrm{CF}=1.5$).

Question No. (2)

(14 Points)
3 a) Explain with net drawing how does face milling differs basically fro peripheral milling. In addition, explain why there are different types milling cutters?
b) Explain with net drawing the selection of cutting tool material, geome and the cutting condition for a given application?
3 c) What are the main characteristics required for the cutting tool. Menti two different types of the cutting tool material and the advantages each type.
3) d) Exnlain hy drawing fiye different tynec af turninc nronocoos?

Q 3
(a) The chip is formed by alecalized shear process that takes over avery narrow region. This large strain, high stan plastic cleformation evolves out of aradial compere Zone that travels ahead of the tad as it passes the work piece.

ven 1

Workpiece material have high ductility

気年!

workpiece material have high hardness

$\operatorname{ten} \hat{1} 1$,

workpiece mate have medium

Qs
(c)

1- $F_{c} \&$ primary cutting force acting in the dircction culting velocity vecter $F c=9 q c i o$ of the 2-Ff: feed forceating in the direction of the tolf

$$
F_{f}=5.40 F_{c}
$$

3- Fr: radial or thrust force acting perpendicu. the machine surface.

$$
\begin{aligned}
& F_{r}=504 c F_{f} \\
& F_{\text {tatal }}=\sqrt{F_{c}^{2}+F_{f}^{2}+F_{r}^{2}}
\end{aligned}
$$

وél Mn ralel oliél clu qêel, ōs y L p M

Q3
(e)

$$
D=2 \mathrm{in}
$$

$$
\begin{array}{ll}
N_{1}=284 & T_{1}=10 . \\
N_{2}=232 & T_{2}=60
\end{array}
$$

Req V_{3} ? $T_{3}=30 \mathrm{~min}$ given.

$$
\begin{gathered}
N_{3} ? \\
V_{1} T_{1}^{n}=V_{2} T_{2}^{n}=C \\
V_{1}=\frac{\pi D N 1}{12}=\frac{\pi * 2 * 284}{12}=149 \mathrm{ft} / \mathrm{min} \\
V_{2}=\frac{\pi D N_{2}}{12}=\frac{\pi * 2 * 232}{12}=122 \mathrm{ft} / \mathrm{min} \\
\frac{V_{4}}{V_{2}}=\left(\frac{T_{2}}{T_{1}}\right)^{n} \Rightarrow \ln 1 \cdot 22=n \ln 6 \\
1.22=(6)^{n}=\left(\frac{66}{16}\right)^{n} \\
\frac{149}{n=0.11} \Rightarrow V_{3} *(30)^{0.11}=C \\
V_{3} T_{3}^{n}=C \Rightarrow C=149(10)^{6.11}=192 \\
V_{1} T_{1}^{n}=C \Rightarrow C
\end{gathered}
$$

\rightarrow Ques Think. 4
-20.0

in shaper, the culling Ta, ! is held in the Toil muT local:

 The = Trent lo Til

 this rgemste hilk it The dividing head

- if we Aequred agucerwith 24 TEoth

$$
\therefore \frac{24}{40}=2 \frac{2}{3}
$$

Q4
(e) Given

$$
\begin{array}{ll}
V=135 \mathrm{ft} 1 \mathrm{~min} & K_{\text {S.1.1 }}=129032 \mathrm{I} \\
A=0.004 \mathrm{in}^{2} & Z=0.28 \\
d=0.08 \mathrm{in} & C F=1.5 \\
E=0.8 & H P_{\text {stspindle }}
\end{array}
$$

Req

$$
\begin{aligned}
& F=b \cdot h \cdot K_{s}=A \cdot K_{s} \\
& A=b \cdot h, b=d=0.08 \mathrm{in} \\
& 0.004=0.08 * h \\
& h=0.05 \mathrm{in} \\
& K_{s}=K_{5.1 .1} / h^{z}-129032 /(0.05)^{0.26} \\
& K_{s}=\frac{129032}{0.46}=280504.5 b / \mathrm{in}^{2} \\
& F_{c}=0.004 * 280504=1122 \mathrm{Ib} \\
& H p=F_{c} \cdot V=1122 * 135=4.59 \mathrm{hP}
\end{aligned}
$$

Question 5
a) explain with drawing the componcit ff Frinding whec why There are differant Tupes of Frinding whecl.
-The Grinding whect ensists maindy of abrasivemate and bonding material.

- The abrasive purticle allomplish culting
- Bonding material helding Nacticles inplace andestab shape and sTrueTure. of wheel.

There are differat Typ.l -f freiting whed depending The Geometry, the grainsize, The alpinsive matenirt Typ The Type of bonding muterin \& The den isteg of abrasive portieles
c) what are the advanterges of using culling fluids?
curting fluids Talse Glled bubricants and cilenth and गT is lised in minothining apera Then to:

1-kol the cultiny z-ne se, ithelp द reduca

 Ahd surface finuh
s = raduce the requild forces mina arevig: ans.

 xitar n.
E)
on milling "vorticil ailly

cind rin shapping machiy
$\stackrel{4}{\underline{4}}$

Question No. (3)

3 a) Explain by drawing the fundamental mechanism of chip formation, the diffe types of chip and the conditions for each type?
b) Explain with drawing the main element of the twist drill and the function of element?
c) Explain with drawing the components of cutting force and its percentage. Exp briefly the importance to determine the cutting force?
3 d) Mention the main sources of heat in machining. Explain the distribution of generated in machining and how we can overcome this generated heat?
4 e) When a 2 in diameter steel is turned on a lathe at $\mathrm{N}=284 \mathrm{rpm}$ the cutting toc changed after 10 min . if the spindle rotates at $\mathrm{N}=232 \mathrm{rpm}$ the cutting too changed after 60 min . calculate the cutting speed when the cutting too changed after 30 min and also calculate the rotating speed of the spindle?

Question No. (4)

3 a) Explain with drawing the shaper (quick return) mechanism for driving tool work?

3
b) Explain with drawing (counter boring - counter sinking - spot facing)?
c) Explain with drawing the division head, how it work and if we need to make a with 24 teeth. How we will set the deviation device?
d) Mention the different methods for making taper turning? And calculate the ta angle for the following product?

4 e) It is required to machining a bar of steel in turning machine with cutting spe $135 \mathrm{f} / \mathrm{min}$, chip cross section $0.004 \mathrm{in}^{2}$ and depth of cut 0.08 in . Where K equal $129032 \mathrm{Ib} / \mathrm{in}^{2}$. Determine:

Question No. (5)

3 a) Explain with drawing the component of grinding wheel, and why there ar different types of grinding wheels?
3 b) Explain the relation between cutting speed and cost per price?
c) What are the advantages of using cutting fluid?
d) Explain with drawing the steps to get the following final product from the given rax material using turning machine?

Final product

4 e) Explain with drawing the steps to get the following final product from the given ra material?

Raw material

Final product
9_{1}
(a)
elos
cuttingedge
noSe
cuttingedge

\& F.> Flank

N H_{2}^{n}, wo
(ध-wl_-

Q1
(C)

- cutting motion (spee div)): relates the velocity of rotating workpiece with respect to the stationary tod.

 (-1,31) 4
- Feed motion (feed $\left(f_{r}\right)$ e is the amount cf the material per revolution or per pass, of the teal over the work
 (n)

Feedmation

$$
\begin{aligned}
& H P_{\text {at spindle }}=\frac{F_{c} V}{33000}=\frac{125 * V}{33000} \\
& V=\frac{\pi D N}{12}=\frac{T * 3.5 * 150}{12}=137.4 \mathrm{ft} / \mathrm{min} \\
& H P_{\text {at spindle }}=\frac{125 * 137.4}{33000}=0.52 \mathrm{hp} \\
& H P_{s}=\frac{H P}{M R R}=\frac{0.52}{48}=0.011 \mathrm{hp} / \mathrm{in}^{3} / \mathrm{min} \\
& H P_{m}=\frac{H P * M R R * C F}{E}=\frac{0.52 * 1.5}{0.8} \\
& H P_{m}=0.975 \mathrm{~h}
\end{aligned}
$$

QR
(a)

- Face milling: the surface generated is at right a to the cutter axis

Jentcré, ck ${ }^{\prime}$

- Peripheral milling: the surface is parallel with t, of rotation of the cutter

 -

92
(c)
cell

 qed,

briefly the cutting tool should have geod (strength, hardy toughness, wear resistance and hot hardness)

Toul steel

- Carbon steels and low/medium alloysteels (called ted steels)
- tool steels lo se hardness at temperture above $400^{\circ} \mathrm{F}$ because of tempering
- low / medium -alloy steeds have alloying element suchas Mo and Crwhich improve hardenability and W and $M c$ which improve wear resistance
- Low/medium alloy steels materials a 150 cose their hardness at $300-650^{\circ} \mathrm{F}$ -

High speed steel

- high allay steel was super i toolsteef that is ret ained it ability at temper ture up to exhibting good (red hardness) with Carbon steel.
- cutting speed $H S 5=$ double ce speed ted steel with equal
- HSS contain in significant a of W, M_{0}, C_{0}, V and $C r+1$ hardness and wear resistant - H ss is still widely used
$Q 2$
(e)

$$
\begin{aligned}
& \quad \omega=10 \mathrm{in} \quad L=8 \mathrm{in} \quad V=150 \mathrm{ft} \text { min } \\
& f_{c}=0.02 \text { inperstroke } \\
& l \Rightarrow \text { stroke length }=2 \mathrm{~L} \\
& l=2 * 8=16 \mathrm{in} \\
& V=\frac{2 l \mathrm{Ns}_{s}}{12 R_{s}} \quad 150=\frac{2 * 16 * \mathrm{Ns}^{1}}{12 * 5 / 9} \\
& N_{S}=31.25 \mathrm{rpm} \quad 16 \mathrm{~min} \\
& C T=\frac{W}{N_{s} f_{c}}=\frac{10}{31.25 * 0.02}=16 \\
& S=\frac{\omega}{f_{c}}=500 \text { strokes. }
\end{aligned}
$$

