Fayoum University Faculty of Engineering $1^{\text {st }}$ year Industrial Eng.

Ouestion 1:

1. If $w=e^{a x^{2}+b y^{2}}$ and $w_{x y}-y w_{x}-x_{y}+x y w=0$, find values of \mathbf{a} and \mathbf{b}.
2. If the vector $u(x, y, z)=u_{1}(x, y, z) \underline{i}+u_{2}(x, y, z) \underline{j}+u_{3}(x, y, z) \underline{k}$ and the function $F=f(x, y, z)$, Prove that
a) $\nabla \bullet \nabla \times u=0$
b) $\nabla \times \nabla \mathrm{F}=\underline{0}$
3. Find the equations of the tangent plane and normal line to the ellipsoid $\frac{3}{4} x^{2}+3 y^{2}+z^{2}=6$ at the point $(2,1,0)$.
4. Find the extrema of the function $F(x, y)=3 x^{3}+y^{2}-9 x+4 y$.
5. What is the greatest area a rectangular can have if the length of its diagonal equal 4.0.

Question 2:

(20 marks)

1. Evaluate the integral $\iint_{R} e^{-\left(x^{2}+y^{2}\right)} d x d y$ and R is the region bounded by the two circles $\mathrm{x}^{2}+\mathrm{y}^{2}=1.0$ and $\mathrm{x}^{2}+\mathrm{y}^{2}=4.0$.
2. Find the volume of the region bounded by parabolic cylinder $z=4-x^{2}$ and the planes $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0$ and $\mathrm{y}=6.0$.
3. Find the volume bounded by $\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}$ and plane $\mathrm{z}=4.0$ (use cylindrical coordinate).

Question 3:

(16 marks)

1. Evaluate by Gauss's theorem $\iint_{S}[x d y d z+y d z d x+z d x d y]$ where S is the surface bounded by cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}=9.0$ and the planes $\mathrm{z}=0$ and $\mathrm{z}=3.0$.
2. Prove that the integral $\int_{(1,1)}^{(3,2)}\left(y e^{x y} d x+x e^{x y} d y\right)$ is path independent and evaluate it.

Question 4:

- Test the following series:
a) $\sum_{\mathrm{n}=1}^{\infty} \frac{1}{3^{\mathrm{n}}+\sqrt{\mathrm{n}^{3}}}$
b) $\sum_{\mathrm{n}=1}^{\infty} \frac{5^{\mathrm{n}}}{\mathrm{n}^{3}}$
c) $\sum_{\mathrm{n}=1}^{\infty} \frac{3^{\mathrm{n}}}{\ln ^{\mathrm{n}}(2 \mathrm{n}+1)}$
d) $\sum_{\mathrm{n}=1}^{\infty} \frac{(\mathrm{n}!)^{2}}{(2 \mathrm{n})!}$

Ouestion 1:

3. If $w=e^{a x^{2}+b y}{ }^{2}$ and $w_{x y}-y w_{x}-\mathrm{xw}_{y}+x y w=0$, find values of \mathbf{a} and b.

Solution:

$$
\begin{aligned}
& w=e^{a x^{2}+b y^{2}} \\
& w_{x}=2 a x e^{a x^{2}+b y^{2}}, w_{y}=2 b y e^{a x^{2}+b y^{2}} \quad, \quad w_{x y}=4 a b x y e^{a x^{2}+b y^{2}}
\end{aligned}
$$

Substitute $\mathrm{w}, \mathrm{w}_{\mathrm{x}}, \mathrm{w}_{\mathrm{y}}$ and w_{xy} into $\mathrm{w}_{\mathrm{xy}}-\mathrm{yw}_{\mathrm{x}}-\mathrm{xw}_{\mathrm{y}}+\mathrm{xyw}=0$
We obtain
$4 a b-2 a-2 b+1=0$, then $a=0.5$ and $b=0.5$
4. If the vector $u(x, y, z)=u_{1}(x, y, z) \underline{i}+u_{2}(x, y, z) \underset{j}{ }+u_{3}(x, y, z) \underline{k}$ and the function $F=f(x, y, z)$, Prove that
b) $\nabla \bullet \nabla \times u=0$
c) $\nabla \times \nabla \mathrm{F}=\underline{0}$

Solution:
a) $\nabla \bullet \nabla \times u=0$
$\nabla \bullet \nabla \times u=\left|\begin{array}{ccc}\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3}\end{array}\right|=\frac{\partial}{\partial x}\left[\frac{\partial \mathbf{u}_{3}}{\partial y}-\frac{\partial \mathbf{u}_{2}}{\partial z}\right]-\frac{\partial}{\partial y}\left[\frac{\partial \mathbf{u}_{3}}{\partial x}-\frac{\partial \mathbf{u}_{1}}{\partial z}\right]+\frac{\partial}{\partial z}\left[\frac{\partial \mathbf{u}_{2}}{\partial x}-\frac{\partial \mathbf{u}_{1}}{\partial y}\right]=0$
b) $\nabla \times \nabla \mathrm{F}=\underline{0}$
$\nabla \times \nabla \mathrm{F}=\left|\begin{array}{ccc}i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_{x} & f_{y} & f_{z}\end{array}\right|=\left[\frac{\partial}{\partial y} f_{z}-\frac{\partial}{\partial z} f_{y}\right] i-\left[\frac{\partial}{\partial x} f_{z}-\frac{\partial}{\partial z} f_{x}\right] j+\left[\frac{\partial}{\partial x} f_{y}-\frac{\partial}{\partial y} f_{x}\right] k=\underline{0}$
3. Find the equations of the tangent plane and normal line to the ellipsoid $\frac{3}{4} x^{2}+3 y^{2}+z^{2}=6$ at the point $(2,1,0)$.

Solution:

$$
\begin{aligned}
& F=\frac{3}{4} x^{2}+3 y^{2}+z^{2}-6 \\
& \left.F_{x}\right|_{(2,1,0)}=\left.\frac{3}{2} x\right|_{(2,1,0)}=3 \quad,\left.F_{y}\right|_{(2,1,0)}=\left.6 y\right|_{(2,1,0)}=6 \quad,\left.F_{z}\right|_{(2,1,0)}=\left.2 z\right|_{(2,1,0)}=0
\end{aligned}
$$

The equation of tangent plane:
$X+2 y=4$

The equation of the normal lines:

$\frac{x-2}{3}=\frac{y-1}{6}$
$x-2=3 t, y-1=6 t, z=0$
4. Find the extrema of the function $F(x, y)=3 x^{3}+y^{2}-9 x+4 y$.

Solution:

$$
\begin{aligned}
& \mathrm{F}(\mathrm{x}, \mathrm{y})=3 \mathrm{x}^{3}+\mathrm{y}^{2}-9 \mathrm{x}+4 \mathrm{y} \\
& \mathrm{~F}_{\mathrm{x}}=9 \mathrm{x}^{2}-9 \quad, \quad \mathrm{~F}_{\mathrm{y}}=2 \mathrm{y}+4 \\
& \mathrm{~F}_{\mathrm{xx}}=18 \mathrm{x} \quad, \quad, \quad \mathrm{~F}_{\mathrm{y}}=2 \quad, \mathrm{~F}_{\mathrm{xy}}=0
\end{aligned}
$$

The critical points are $(1,-2)$ and $(-1,-2)$
$\Delta=36$ x

point	Fxx	Fyy	$\boldsymbol{\Delta}$	conclusion
$(1,-2)$	+ve	+ve	+ve	Min. point
$(-1,-2)$	-ve	+ve	-ve	Saddle point

5. What is the greatest area a rectangular can have if the length of its diagonal equal 4.0 .

Solution:

$g(x, y)=(\text { Diagonal length })^{2}=x^{2}+y^{2}=16$
$f(x, y)=$ area of rectangular $=x y$
$\frac{f_{x}}{g_{x}}=\frac{f_{y}}{g_{y}}=\lambda$,
$\frac{y}{2 x}=\frac{x}{2 y}=\lambda \quad$ we get $x=y$ then $x^{2}=8$
the greatest area $=8$

Question 2:

4. Evaluate the integral $\iint_{R} e^{-\left(x^{2}+y^{2}\right)} d x d y$ and R is the region bounded by the two circles $x^{2}+y^{2}=1.0$ and $x^{2}+y^{2}=4.0$.

Solution:

$$
\iint_{R} e^{-\left(x^{2}+y^{2}\right)} d x d y=\int_{0}^{2 \pi} \int_{1}^{2} e^{-r^{2}} r d r d \theta=\pi\left(e^{-1}-e^{-4}\right)
$$

5. Find the volume of the region bounded by parabolic cylinder $z=4-x^{2}$ and the planes $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0$ and $\mathrm{y}=6.0$.

Solution:

$\underline{\text { Volume }=\int_{0}^{6} \int_{0}^{2} \int_{0}^{4-x^{2}} d z d x d y=\int_{0}^{6} \int_{0}^{2}\left(4-x^{2}\right) d x d y=32}$
3. Find the volume bounded by $\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}$ and plane $\mathrm{z}=4.0$ (use cylindrical coordinate.

Solution:

Volume $=\int_{0}^{2 \pi} \int_{0}^{2} \int_{\mathrm{r}^{2}}^{4} \mathrm{rdz} \mathrm{dr} \mathrm{d} \theta=\int_{0}^{2 \pi} \int_{0}^{2} \mathrm{r}\left(4-\mathrm{r}^{2}\right) \mathrm{dr} \mathrm{d} \theta=8 \pi$

Ouestion 3:

(16 marks)
3. Evaluate by Gauss's theorem $\iint_{S}[x d y d z+y d z d x+z d x d y]$ where S is the surface bounded by cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}=9.0$ and the planes $\mathrm{z}=0$ and $\mathrm{z}=3.0$.

Solution:

$\mathrm{F}=\mathrm{xi}+\mathrm{y} \mathrm{j}+\mathrm{zk}, \quad \nabla \bullet \mathrm{F}=3$
$\mathrm{I}=\int_{0}^{2 \pi} \int_{0}^{3} \int_{0}^{3} 3 \mathrm{r} d z \mathrm{dr} \mathrm{d} \theta=81 \pi$
4. Prove that the integral $\int_{(1,1)}^{(3,2)}\left(y e^{x y} d x+x e^{x y} d y\right)$ is path independent and evaluate it.

Solution

$P=y e^{x y}$
$\mathrm{Q}=\mathrm{xe} \mathrm{e}^{\mathrm{xy}}$
$\frac{\partial P}{\partial y}=e^{x y}(1+x y)$
$\frac{\partial Q}{\partial x}=\mathrm{e}^{\mathrm{xy}}(1+\mathrm{xy})$
since
$\frac{\partial \mathrm{P}}{\partial \mathrm{y}}=\frac{\partial Q}{\partial x}=\mathrm{e}^{\mathrm{xy}}(1+\mathrm{xy})$ then the integrals is independent of path.

Along $\mathrm{y}=1, \mathrm{dy}=0$
$I_{1}=\int_{x=1}^{x=3} e^{x} d x=e^{3}-e$
Along $\mathrm{x}=3, \mathrm{dx}=0$
$I_{2}=\int_{y=1}^{y=2} 3 e^{3 y} d x=e^{6}-e^{3}$ then,
$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}=\mathrm{e}^{6}-\mathrm{e}$

Question 4:

- Test the following series:
e) $\sum_{n=1}^{\infty} \frac{1}{3^{n}+\sqrt{n^{3}}}$

We have $\frac{1}{3^{\mathrm{n}}}>\frac{1}{3^{\mathrm{n}}+\sqrt{\mathrm{n}^{3}}}$ and $\sum_{\mathrm{n}=1} \frac{1}{3^{\mathrm{n}}}$ is a geometric series and converges, then By comparison test the series $\sum_{\mathrm{n}=1}^{\infty} \frac{1}{3^{\mathrm{n}}+\sqrt{\mathrm{n}^{3}}}$ converges.

$$
\text { f) } \sum_{\mathrm{n}=1}^{\infty} \frac{5^{\mathrm{n}}}{\mathrm{n}^{3}}
$$

By ratio test
$\lim _{n \rightarrow \infty} \frac{5^{n+1} n^{3}}{5^{n} n^{n+1}}=\lim _{n \rightarrow \infty} 5\left(\frac{n}{n+1}\right)^{3}=5>1$ then the series diverges.
g) $\sum_{n=1}^{\infty} \frac{3^{n}}{\ln ^{n}(2 n+1)}$

By Cauchy test
$\lim _{n \rightarrow \infty} \sqrt[n]{\frac{3^{n}}{\ln ^{n}(2 n+1)}}=\lim _{n \rightarrow \infty} \frac{3}{\ln (2 n+1)}=0<1$, then the series converges.
h) $\sum_{\mathrm{n}=1}^{\infty} \frac{(\mathrm{n}!)^{2}}{(2 \mathrm{n})!}$

By ratio test
$\lim _{n \rightarrow \infty} \frac{((\mathrm{n}+1)!)^{2}}{(2 \mathrm{n}+2)!} \frac{(2 \mathrm{n}!)}{(\mathrm{n})^{2}!}=\lim _{\mathrm{n} \rightarrow \infty} \frac{(n+1)^{2}}{(2 n+2)(2 n+1)}=\frac{1}{4}<1$, then the series converges.

