هندسة صناعية – الفرقة الرابعة

مادة: الاساليب المتقدمة في الصيانة

الحل النموذجي امتحان نهاية الترم – للعام الجامعي ٢٠١٠/٢٠٠٩

د/اسلام هلالی

<u>01</u>

a) Maintenance Management is a powerful systematic methodology to maximize the facility effectiveness and improve the maintenance resource productivity, through optimizing maintenance policies for the critical equipment.

Definitions:

26.1.1.1	
Methodology	A total view approach = Good communication
	(Maintenance, Process, HSE, Inventory, Resource,
	etc.)
Systematic	Documented rule-based = Codes & Standards
Powerful	Applicable and flexible =
	Organization structure & Team approach
Effectiveness	Utilization + performance + efficiency
Resource	Materials, manpower, tools, equipment,
	subcontractors, and cost
Productivity	Resource utilization and efficiency
Policy	Certain rules and program for long term
Maintenance	Failure-based, time-based, condition-based, and
Policy	risk-based
Criticality	Effect on HSE, Process, Standby and Cost

b) *Level of RCM Application:*

- Plant
- System
- Sub-system
- Component-Assembly
- Part

c)<u>Maintenance Policies:</u>

The policy is a certain rule-based for long term according to the working conditions.

d)

Facility (System level)	Equipment	Criticality (HSE, Process,		
		etc.)		
Air system	Compressor	С		
Water system	Centrifugal Pump	В		
Oil system	Centrifugal Pump	А		
Steam system	Centrifugal Pump	А		
Fire-fighting system	Centrifugal Pump	А		
Power generation	Diesel	A		

PM level	Frequency	PM type	Maintenance duration	No. of workers	Man-day Per PM type
Y-Level 1	1	Shutdown	14 day	20	280*1=280
S-Level 2	1	Shutdown	7day	15	105*1=105
3M-Level 3	2	Shutdown	4day	10	40*2=80
M-Level 4	8	Running	2day	8	16*8=128
W-Level 5	36	Running	5hours	2	10*36/24=15
D-Level 6	317	Running	1hours	2	2*317/24=27

a) The size of maintenance labor force

Annual PM man-day per diesel = 635Total PM annual man-day required = 2540The size of PM labor force = 8 workers The size of CM labor force = 380*4/330=5 workers Total labor force = 13 workers

b)Average equipment availability = Active operating time / Total time

= (365 - 44) / 365 = 87.9 %

c) The average down time per year

РМ Туре	Annual	Duration	PM Downtime
	Frequency	(day)	(day)
	1	14	14*1=14
Y			
S	1	7	7*1=7
3M	2	4	4*2=8
Μ	8	2	-
W	36	5/24	-
D	317	1/24	-

PM downtime per diesel	29
------------------------	----

Average down time = 29 + 15 = 44 day/year per dieselAnnual downtime cost losses = 44 * 4 * 1000 = \$176000

<u>Q2</u>

d)Annual maintenance cost

РМ Туре	Annual	Cost	Spare parts PM Cost
	Frequency	\$1000	\$1000
Y	1	10	10 * 1= 10
S	1	8	8 * 1 = 8
3M	2	5	5 * 2 = 10
Μ	8	-	
W	36	-	
D	317	-	

Annual spare parts PM per diesel =	28
Total annual spare parts PM cost =	28 * 4 = 112

The average annual spare parts CM cost = \$ 12000 * 4 = \$ 48,000

Annual spare parts maintenance cost = 112000 + 48000 = \$ 160,000

Annual labor cost = 12 subscriptions = 220 dev/subscriptions = 10 memory

13 workers * 330 day/year * \$ 10 per man-day= \$ 42,900

Annual direct maintenance cost = \$ 160000 + \$ 42000 = \$ 202000

Overhead cost = 25 % direct cost

Annual maintenance cost = \$ 202000 * 1.25 = \$ 252500

Annual maintenance cost = \$ 252500

Basic Annual PM Plan

Eq.						Mor	nth #					
code	1	2	3	4	5	6	7	8	9	10	11	12
DG1	Y	М	М	3M	М	М	S	М	М	3M	М	М
DG2	М	М	M	М	Y	3M	М	М	S	М	М	3M
DG3	М	3M	М	М	M	М	М	3M	Y	М	S	М
DG4	S	М	Μ	3M	М	М	<u>M</u>	М	М	3M	М	Y

<u>Q3</u>

The yearly PM programs information for a production line in a shop are as follows:

	T	M]	D]	G		→
	T Stand by	M Stand by		D Stand by]			
M/c	No .of	Down	Down PM levels per Machine					
Туре	Machines	Time CM	10 d	lays	6 monthly		yearly	
		(day/year)	Man	Day	Man	Day	Man	Day
Turning	2	24	2	1	4	2	5	4
Milling	2	16	2	1	-	-	4	3
Drilling	2	10	2	1	4	2	-	-
Grinding	1	8	-	-	3	2	3	3

M/c	PM Spar	PM Spar parts and materials cost (L.E)				
	10 days	6 monthly	yearly			
Туре						
Turning	300	1000	2000			
Milling	600	-	4000			
Drilling	500	1600	-			
Grinding	-	1000	2000			

Working conditions:

-Production & maintenance 52 week/year, 6day/week, two shifts

- Manpower 45 week/year, 6day/week, one shift
- -Average labor rate is 15 L.E/man-hour
- Average other costs are 25 % direct maintenance cost
- Average CM spare parts costs are 15% PM spare parts costs
- Average CM manpower are 30% PM manpower
- Average down time cost rate is 100 L.E/machine-hour

PM level	Frequency	Maintenance duration	No. of workers	Man-day Per PM type
Y-Level 1	1	8 day	10	80*1=80
S-Level 2	1	2day	4	8*1=8
10D-level 3	36.3	day	2	3

a) The size of maintenance labor force for turning machine

The size of labor force for turning = 91*2/312=0.584

The	size	ofr	nainten	ance	labor	force	for	mill	ing	machin	ne

PM level	Frequency	Maintenance duration	No. of workers	Man-day Per PM type
Y-Level 1	1	3 day	4	12*1=12
S-Level 2	1	-	-	-
10D-level 3	36.3	day	2	3

The size of labor force for turning = 15*2/312=0.096=1 workers

PM level	Frequency	Maintenance	No. of	Man-day	
		duration	workers	Per PM	
				type	
Y-Level 1	1	-	-	-	
S-Level 2	1	2	4	8	
10D-level 3	36.3	day	2	3	

The size of labor force for turning = 11*2/312=0.07 = 1 workers

The size of maintenance labor force for grinding machine

PM level	Frequency	Maintenance duration	No. of workers	Man-day Per PM type
Y-Level 1	1	3	3	9
S-Level 2	1	2day	3	6
10D-level 3	36.3	2day	2	3

The size of labor force for turning = 18*1/312=0.057 = 1 workers

<u>0</u> 1	
<u>V</u> 4	•

Policy	CM	PM	СМ	PM	DT cost	Total	Best
	units	Units	Cost	cost		Cost	
RTF	3 * 3	-	27000	0	93750	120750	-
Annual	2 * 3	1 * 3	18000	9000	62500	89500	-
6 Monthly	1 * 3	2 * 3	3000	18000	31230	52238	-
4 Monthly	0	3 * 3	0	27000	0	27000	Х
3 Monthly	0	4 * 3	0	36000	0	36,000	I