Fayoum University
Faculty of Engineering
Preparatory Year
Time : 90 Minutes.
May, 4, 2010.
Mathematics
Prof. Dr. Samy El Badawy Yehia

1) $\int \frac{4 x+5}{x^{2}+2 x+2} d x=2 \int \frac{2 x+2}{x^{2}+2 x+2} d x+\int \frac{1}{x^{2}+2 x+2} d x=2 \ln \left|x^{2}+2 x+2\right|+\int \frac{1}{(x+1)^{2}+1} d x=$
$=2 \ln \left|x^{2}+2 x+2\right|+\tan ^{-1}(x+1)+C$.
2) $\int \frac{\sqrt{x^{3}+1}}{x} d x=$

Let $\mathrm{u}=\sqrt{x^{3}+1}$ then $u^{2}=x^{3}+1, u^{2}-1=x^{3}$.
and $2 u d u=3 x^{2} d x$. then $\frac{2}{3} u d u=x^{2} d x$.
$=\int \frac{\sqrt{x^{3}+1}}{x^{3}}\left(x^{2} d x\right)=\int \frac{u}{u^{2}-1}\left(\frac{2}{3} u d u\right)=\frac{2}{3} \int \frac{u^{2}}{u^{2}-1} d u=\frac{2}{3}\left[\int 1+\frac{1}{u^{2}-1}\right] d u=\frac{2}{3}\left[u-\tan \operatorname{sh}^{-1} u\right]+\mathrm{C}=$ $=\frac{2}{3}\left[\sqrt{x^{3}+1}-\tan s h^{-1} \sqrt{x^{3}+1}\right]+C$.
3)Determine the area of the region outside $r=3+2 \sin \theta$ and inside $r=2$ (shaded area).

$A=\int_{\frac{7 \pi}{6}}^{\frac{11 \pi}{6}} \frac{1}{2}\left[(2)^{2}-(3+2 \sin \theta)^{2}\right] d \theta=\int_{\frac{7 \pi}{6}}^{\frac{11 \pi}{6}} \frac{1}{2}\left[-5-12 \sin \theta-4 \sin ^{2} \theta\right] d \theta===$
$=\int_{\frac{7 \pi}{6}}^{\frac{11 \pi}{6}}\left[-7-12 \sin \theta+2(\cos (2 \theta)] d \theta=\frac{1}{2}[-7 \theta+12 \cos \theta+\sin (2 \theta)]_{\frac{7 \pi}{6}}^{\frac{11 \pi}{6}}=\frac{11 \sqrt{3}}{2}-\frac{7 \pi}{3}=2.196\right.$.
4) Show that the angle between the pair of lines :

$$
3 x^{2}-7 x y+4 y^{2}=0
$$

is equal to the angle between the pair

$$
6 x^{2}-5 x y+y^{2}=0
$$

The First Pair is $(3 x-4 y)(x-y)=0$. Which gives the two lines $3 x-4 y=0$ and $x-y=0$ with slopes $3 / 4$ and 1 then the angle Θ between them is :

$$
\tan \theta= \pm \frac{m_{1}-m_{1}}{1+m_{1} m_{2}}= \pm \frac{3 / 4-1}{1+(3 / 4)(1)}= \pm 1 / 7
$$

The Second Pair is $(3 x-y)(2 x-y)=0$. Which gives the two lines $3 x-y=0$ and $2 x-y=0$ with slopes 3 and 2.then the angle ϕ between them is :

$$
\tan \phi= \pm \frac{m_{3}-m_{4}}{1+m_{3} m_{4}}= \pm \frac{3-2}{1+6}= \pm 1 / 7
$$

5) The area bounded between the curves $y=\sqrt[3]{x}$ and $y=\frac{x}{4}$ is revolved about the y axis. Find the volume of the resulting solid.

Thickness	dy
Inner Radius	y^{3}
Outer Radius	$4 y$

$$
V=\pi \int_{0}^{2}\left[16 y^{2}-y^{6}\right] d y=\left.\pi\left[\frac{16}{3} y^{3}-\frac{1}{7} y^{7}\right]\right|_{0} ^{2}=\frac{512 \pi}{21} .
$$

6) The space ship Apollo 11 orbited the moon before landing on it. The orbit was an elliptical shape with the centre of the moon as one of its focii. If the radius of the moon is 1728 km . The nearest
point of the orbit to the surface of the moon was 110 km . The farthest point was 314 km . Find the equation of this ellipse.
$2 \mathrm{a}=2$ times the radius of the moon + min. distances + max. Distance $=2 \times 1728+110+314=$ 3880.

Then $\mathrm{a}=1940 . \mathrm{c}=1940-(1728+110)=102$.
$b^{2}=a^{2}-c^{2}=3753196$. The equation of the ellipse is :

$$
\frac{x^{2}}{3763600}+\frac{y^{2}}{3753196}=\operatorname{lor} \frac{x^{2}}{(1940)^{2}}+\frac{y^{2}}{(1937.32)^{2}}
$$

7) Given the two circles :

$$
\begin{aligned}
& S_{1}: x^{2}+y^{2}+2 g_{1} x+2 f_{1} y+c_{1}=0 \\
& S_{2}: x^{2}+y^{2}+2 g_{2} x+2 f_{2} y+c_{2}=0
\end{aligned}
$$

Show that for each $\lambda \in \mathrm{R}$ (R is the set of real numbers), the circle $S_{1}+\lambda S_{2}=0$ is coaxial with both S_{1} and S_{2}.

Let λ and μ be any two real numbers. Then the radical axis of the two circles : $S_{1}+\lambda S_{2}=0$ and $S_{1}+\mu S_{2}=0$ is :
$\frac{S_{1}+\lambda S_{2}}{1+\lambda}-\frac{S_{1}+\mu S_{2}}{1+\mu}=0 \quad$ which gives $\frac{(1+\mu)\left(S_{1}+\lambda S_{2}\right)-(1+\lambda)\left(S_{1}+\mu S_{2}\right)}{(1+\lambda)(1+\mu)}=0$. Then
$S_{1}+\lambda S_{2}+\mu S_{1}+\lambda \mu S_{2}-S_{1}-\mu S_{2}-\lambda S_{1}-\lambda \mu S_{2}=0$. Then $:$
$\mu S_{1}-\lambda S_{1}+\lambda S_{2}-\mu S_{2}=0$. Then $S_{1}(\lambda-\mu)-S_{2}(\lambda-\mu)=0$. Which gives the radical axis :

$$
S_{1}-S_{2}=0
$$

which is independent of the particular choice of λ and μ.

