

Fifth Article (Considered Single - Shared with others outside the specialization – Published in International Journal).

Genetic Statistical Model to Estimate Epistasis, Additive and Dominance Genetic Effects Using Advanced Populations. (2017). Egyptian Journal of Agronomy, 39(1), 127-135.

[#]Khalaf, A. E., Sabet*, T. M., Yassein*, A. A. M.

#Agronomy Dept., Plant Breeding Section Faculty of Agriculture, Fayoum Univ., *Genetics Dept., , Faculty of Agriculture, Fayoum Univ., 6351-Fayoum, Egypt.

Article	Considered Single - Shared with others outside the	Impact Factor:
status	specialization – Published in International Journal	

Abstract

Estimating gene effects contributing to metric traits has been investigated in several studies. Most estimation methods focused on means of earlier filial (\overline{F}_1 and \overline{F}_2) and backcross populations (\overline{BC}_{11} and \overline{BC}_{12}). In this paper, a novel approach is proposed to estimate gene effect using the data generated from advanced filial (\overline{F}_3 , \overline{F}_4 , ..., \overline{F}_n) and backcross populations) \overline{BC}_{n1} and \overline{BC}_{n2}). Where the following set of equations is derived by algebraic solution of \overline{P}_1 , \overline{P}_2 , \overline{F}_3 , \overline{F}_4 , \overline{BC}_{31} and \overline{BC}_{32} means: Mean (M) = $\frac{1}{98}(49\ \overline{P}_1 + 49\ \overline{P}_2 - 64\ \overline{BC}_{31} - 64\ \overline{BC}_{32} + 128\ \overline{F}_4$), Additive effect (D) = $\frac{1}{2}(\overline{P}_1 - \overline{P}_2)$, Dominance effect (H) = $\frac{1}{49}(384\ \overline{BC}_{31} + 384\ \overline{BC}_{32} - 196\ \overline{F}_3 - 294\ \overline{P}_1 - 294\ \overline{P}_2 + 16\ \overline{F}_4$) Three types of epistasis: Additive effect (I) = $\frac{32}{49}(\overline{BC}_{31} + \overline{BC}_{32} - 2\ \overline{F}_4)$, Additive x dominance effect (J) = $\frac{1}{7}(32\ \overline{BC}_{31} - 32\ \overline{BC}_{32} - 28\ \overline{P}_1 + 28\ \overline{P}_2)$ and Dominance affect (J) = $\frac{1}{7}(92\ \overline{BC}_{31} - 32\ \overline{BC}_{32} - 28\ \overline{P}_1 + 49\ \overline{P}_2 - 64\ \overline{BC}_{31} - 64\ \overline{BC}_{32}$)The proposed equations have been proved by means of algebra, in addition to mathematical proof using real data. The results suggest that the model can serve as a viable particularly to estimate epistasis, additive and dominance genetic effects using the data generated from advanced filial and backcross populations \overline{P}_1 , \overline{P}_2 , \overline{F}_3 , \overline{F}_4 , \overline{BC}_{31} and \overline{BC}_{32} .