كلية الزراعة حامعة الفيوم قسم المحاصيل **Faculty of Agriculture Agronomy Department Fayoum University** Second Article: (Sharing with another inside and outside the specialization-Published). Exogenous micronutrients modulate morpho-physiological attributes, yield, Article title and sugar quality in two salt-stressed sugar beet cultivars Taia A. Abd El-Mageed¹, Mohamed O.A. Rady², Wael M. Semida³, Ahmed Shaaban², Ali A.A. Mekdad² **Participants** ¹Soil and Water Department, Faculty of Agriculture, Fayoum University ²Agronomy Department, Faculty of Agriculture, Fayoum University ³Horticulture Department, Faculty of Agriculture, Fayoum University Sharing with another inside and outside the specialization-Published in Article status International Journal The Journal Journal of Soil Science and Plant Nutrition, 21(2):1421-1436. 3.872 **Impact** Factor

ABSTRACT

Exogenously applied micronutrients (M) have been reported to boost salinity tolerance and improve yield and quality. However, very little is known about the effect of M mixture foliar application under saline soil condition. Our objective was to investigate the influences of M mixture foliar application on morpho-physiological traits, yield, and quality and nutritional status of sugar beet under saline (9.39 dS m⁻¹) soil. Two consecutive (2018/2019–2019/2020) field trials were conducted on both Romulus and Francesca sugar beet cultivars treated with M mixture (0 ppm; [M0], 150 ppm [M₁₅₀;75 Fe (FeSO₄), 50 Zn (ZnSO₄), 25 Mn (MnSO₄)], and 300 ppm [M₃₀₀; 150 Fe (FeSO₄) 100 Zn (ZnSO₄), 50 Mn (MnSO₄)]. M₁₅₀ or M₃₀₀ significantly boosted growth, water status, photosynthetic efficiency, nutritional status, and productivity of sugar beet. M₃₀₀ increased root yield (RY) by 11.5% and 42.0% and true sugar yield (TSY) by 22.7% and 92.9% compared to M_{150} and M₀, respectively. M₃₀₀-treated plants had higher sucrose, true sugar, and quality index but lower loss sugar and non-sugar impurities M₃₀₀ markedly improved sugar beet performance owing to increase leaf hydration status, photosynthetic efficiency, nutrients (K⁺, Fe²⁺, Zn^{2+} , and Mn^{2+}) uptake, and K^+/Na^+ ratio. Romulus exhibited enhanced growth, yield, and quality, reflecting more salt tolerance when compared with Francesca. Stepwise regression indicated plant fresh weight, SPAD chlorophyll, and leaves number plant⁻¹ are the most influential RY- and TSY-attributed characteristics in salt-stressed sugar beet. M₁₅₀ or M₃₀₀ are more effective and may offer a potential economic alternative for salinity-stress alleviation in salt-stressed sugar beet.