Article Title No. 1	Genetic Statistical Model to Estimate Epistasis, Additive and			
	Dominance Genetic Effects Using Advanced Populations.			
participants	Khalaf, A. E., Sabet*, T. M., Yassein*, A. A. M.			
	Agronomy Dept. and * Genetics Dept., Plant Breeding Section, Faculty			
	of Agriculture, Fayoum Univ., 6351-Fayoum, Egypt.			
Journal	Egypt. J. Agronomy.2017. 39:(1) 12			

Abstract

Most investigations for estimating gene effects contributing to metric traits has been exclusively focused on means of earlier filial (F_1 and F_2) and backcross populations (BC_{11} and BC_{12}). In this paper a novel approach is suggested using data generated from advanced filial (F_3 , F_4 F_n), and backcross populations (BC_{n1} and BC_{n2}). The following set of equations is derived by algebraic solution of P_1 , P_2 , F_3 , F_4 , and BC_{32} BC_{31} means:

```
Mean (M) = 1/98(49P_1 + 49P_2 - 64BC_{31} + 128F_4), Additive effect (D) = 1/2(P1-P2), Dominance effect (H) = 1/49(384BC_{31} + 384BC_{32} - 196F_3 - 294\ P_1 - 294P_2 + 16F_4) Three types of epistasis Additive x additive effect (I) = 32/49(BC_{31} + BC_{32} - 2F_4), Additive x dominance effect (J) = 1/7(32BC_{31} - 32BC_{32} - 28P_1 + 28P_2) and Dominance x dominance effect (L) = 16/49(98F_3 - 68F_4 + 49\ P_1 + 49P_2 - 64BC_{41} - 64BC_{32})
```

The proposed equations have been proved by means of algebra, in addition to mathematical proof using real data. The results suggest that, the model can serve as a viable particularly to estimate epistasis, additive and dominance genetic effects using the data generated from advanced filial and backcross populations $P_1,\,P_2,\,F_3,\,F_4,\,BC_{31}$ and BC_{32} .