

Identification and characterization of biocontrol genes and their functions from *Trichoderma* isolates against soil borne fungal plant pathogens

By

Nada Fathi Hemeda Ahmed

A thesis submitted in partial fulfillment

Of

The requirement for the degree of

Doctor of Philosophy

In

Agricultural Sciences

(Genetics)

Department of Genetics

Faculty of Agriculture, Fayoum

FAYOUM UNIVERSITY

2013

APPROVAL SHEET

Identification and characterization of biocontrol genes in *Trichoderma* isolates and their functions against soil borne fungal plant pathogens

By

Nada Fathi Hemeda Ahmed

B.Sc. (Agric. Sci. Plant path.)

Fac. of Agric., Fayoum Branch, Cairo Univ., 1998

M.Sc. (Agric. Sci. Genetics.)

Fac. of Agric., Fayoum Univ., 2006

This thesis for Ph.D. degree (Genetics) has been approved by:

Prof. Dr. Samir Abd El- Aziz Ibrahim

Professor of Genetics, Faculty of Agriculture, Ain Shams University

Signature.....

Prof. Dr. Mohamed Serag El-Din Abd El-Sabour

Professor of Genetics, Faculty of Agriculture, Benha University

Signature.....

Prof. Dr. Zaki Ahmed El- Fiky

Professor of Genetics, Faculty of Agriculture, Fayoum University

Signature.....

Dr. Gamal Mohamedin Hassan

Assistant Professor of Genetics, Faculty of Agriculture, Fayoum University

Signature.....

Date of Examination: / / 2013

Identification and characterization of biocontrol genes in *Trichoderma* isolates and their functions against soil borne fungal plant pathogens

Nada Fathi Hemeda Ahmed

B.Sc. (Agric. Sci. Plant path.)

Fac. of Agric., Fayoum Branch, Cairo Univ., 1998

M.Sc. (Agric. Sci. Genetics.)

Fac. of Agric., Fayoum Univ., 2006

Prof. Dr. Zaki Ahmed EL-Fiky

Professor of Genetics, Faculty of Agriculture, Fayoum University

Signature.....

Dr. Gamal Mohamedin Hassan

Assistant Professor of Genetics, Faculty of Agriculture, Fayoum University

Signature.....

Prof. Dr. Makram Ahmed Mohamed Sayed

Professor of Pesticides Toxicology, Faculty of Agriculture, Fayoum University

Signature.....

Summary

The present study was carried out in Genetics Department, Faculty of Agriculture, Fayoum University, Egypt, during the period from $\forall \cdot \cdot \forall$ to 2013. Eighteen isolates of *Trichoderma* spp. previously isolated from the rhizospheres of different plants (Faba bean, Bean, Cucumber, Cowpea and Wheat) growing in Fayoum Governorate, and two reference strains (*T. harzianum* and *T. koningii*) obtained from Microbiological Resources Center (MIRCEN), Faculty of Agriculture, Ain Shams University, Egypt.

Therefore, the objectives of this study were

- (1) To identify *Trichoderma* isolates using morphological and molecular characters.
- (2) To evaluate the potential of isolates as biological control agents of *Rhizoctoni solani*.
- (3) To isolate the chitinase and cellulase producing *Trichoderma* isolates.
- (4) Isolation of their chitinase, cellulase genes and detect the sequence of these genes.

The obtained results were summarized as the follows:

Eighteen isolates of *Trichoderma* spp. previously isolated from the rhizospheres of different plants growing in Fayoum Governorate. Morphological and molecular characterization of antagonistic ability of *Trichoderma* species were conducted. On the basis of morphological and cultural characteristics, the *Trichoderma* isolates were identified as *T. harzianum* (10 isolates), *T. koningii* (8 isolates), and *T. viride* (2 isolates).

All fungal *Trichoderma* isolates inhibited the growth of *Rhizoctonia solani* which caused the root rot disease on Faba bean and varied in their antagonistic effect.

The isolate FUE_3 showed the highest inhibition (57.77%) of *Rhizoctonia* solani growth. On the other hand, FUE20 showed the lowest inhibition (25.33%). The remaining isolates showed intermediate values percentage of inhibition growth of *R. solani*.

Results indicated that the maximum amount of chitinase 0.018 mg/ml excreted by I18 isolate. The minimum amount of chitinase 0.0047 mg/ml excreted

by FUE10 and I12 isolates. Excretion of chitinase by the rest of *Trichoderma* isolates ranged from 0.017 to 0.005 mg/ml.

Results indicated that the maximum amount of cellulase 0.075 mg/ml excreted by FUE5 isolate. The minimum amount of cellulase 0.006 mg/ml excreted by FUE8 and FUE13 isolates. Excretion of cellulase by the rest of *Trichoderma* isolates ranged from 0.035 to 0.007 mg/ml.

Under greenhouse, soil infestation singly with *Trichoderma* greatly reduced the percentages of pre- and post-emergence damping off caused by *R. solani*. After 15 day, FUE6 and I18 isolates were the most effective. *Trichoderma koningii* I18 was the most effective one followed by *Trichoderma koningii* FUE6 after 30 days from sowing. *Trichoderma harzianum* FUE15 was the most effective one for root rot disease.

All six isolates produced PCR products of similar size for the rDNA region. A single product of approximately 560 to 600 bp was obtained from all the PCR amplifications with primers ITS1 and ITS4 for 6 biocontrol isolates of *Trichoderma* spp. The highest homology (100%) was found between isolates FUE5, FUE6 and FUE3, FUE5. While the less homology (92%) was found between isolate FUE15 and all isolates except isolate FUE9 (93%).

Based on the results obtained all the six isolates can be grouped into two main clusters. One cluster represents *T. harzianum* (FUE15) and other *T. konigii* (FUE3, FUE5, FUE6, FUE9 and I18). The GenBank accession number for the ITS region of rDNA sequence of *Trichoderma* is KC200070, KC200071, KC200073, KC200074 and KC200075 for *Trichoderma koningii* FUE3, *T. koningii* FUE5, *T. koningii* FUE6, *T. koningii* FUE9 and *T. harzianum* FUE15, respectivelly.

A specific band about 1039 bp was amplified from *Trichoderma* chromosomal DNA. It was observed that specific band appeared in all tested *Trichoderma* isolates. The primers used were useful to identify the presence of the chitinase gene in *Trichoderma* isolates.

Upon complete analysis, the full length chitinase gene isolated from *Trichoderma* isolates had 1039 bp, encoding 344 amino acid. Multiple alignment of the deduced amino acid sequence with related fungal proteins was performed with the CLUSTAL W 2.1 program when *Trichoderma* isolates chit36 was compared with the previously reported chitinase sequences of ABG56440-*T*. *asperellum*, ABC48784-*T. asperellum*, AAL01372-*T. harzianum* and ABO14715-

T. atroviride. The results in table 8 showed that, using pairwise alignment, the homology found between the ABO14715-*T. atroviride chi36* and chitinase protein from FUE3 *T. konigii* and FUE9 *T. konigii* was 100%. The homology between the ABG56440-*T. asperellum* and the ABC48784-*T. asperellum* equal the homology between the FUE3 *T. koningii* and the FUE9 *T. koningii* (100%). The less homology between the I18 *T. koningii chi36* and chitinase protein from ABC48784-*T. asperellum* and AAL01372-*T. harzianum* was 96%.

The results showed that, using pairwise alignment, the homology found between the *T. harzianum* FUE15 *cbh-1* and celullase protein from AFD01232-*T. harzianum* was 97.1%. The homology between the *T. harzianum* FUE15 and the ADH04808-*T. harzianum* (94.2%). The less homology between the AFD01232-*T. harzianum* and ADH04808-*T. harzianum* was 94.06%.

The length cellulase gene isolated from *Trichoderma* isolates had 204 bp. The dendrogram of *Trichoderma* isolates for celullase gene showed that, the dendrogram was divided into two clusters. The first cluster included *T. harzianum* FUE15 and AFD01232-*T. harzianum*, while the second cluster included ADH04808-*T. harzianum*.