

Eighth Article (Shared with others outside the specialization – Published in International Journal).

Application of biostimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses Scientia Horticulturae. 2021, 288, 110340.

El-Sayed M. Desoky^a, Ahmed S. Elrys^b, Elsayed Mansour^c, Rania S.M. Eid^d, Eman Selem^e, Mostafa M. Rady^{f,*}, Esmat F. Ali^g, Gaber.A.M. Mersal^h, Wael M. Semidaⁱ ^aBotany Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt ^bSoil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt ^cAgronomy Department, Faculty of Agriculture, Benha University, Moshtohor, Qalyoubia 13736, Egypt ^dBotany Department, Faculty of Agriculture, Faculty of Science, Zagazig University, Egypt ^fBotany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt ^gDepartment of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia ^hChemistry Department, Faculty of Agriculture, Fayoum University, P.O. Box 11099, Taif 21944, Saudi Arabia ⁱHorticulture Department, Faculty of Agriculture, Fayoum University, P.O. Box 11099, Taif 21944, Saudi Arabia

Article status	Shared with others outside the specialization – Published in International Journal	Impact Factor: 2.769
----------------	---	----------------------

Abstract

Natural extracts and biostimulants have recently been used to enhance growth and productivity of stressed plants. A pots trial was performed to verify the impacts of maize grain (MgE, 60 g L⁻¹) and/or propolis (PrmE, 40 g L⁻¹) extract foliar application (three times) on growth, physio-biochemical attributes, and productivity of faba bean plants exposed to drought (40% of soil capacity), salinity (150 mM NaCl), or cadmium (2.0 mM Cd²⁺) stress versus absence of stress as a control. Alterations in the antioxidant system and its relationship with stress tolerance were also examined. The results indicated that each stress caused a significant decrease in yield traits, photosynthetic efficiency, pigment contents, gas exchange, relative water content, membrane stability index, and osmolyte contents compared to non-stressed plants. Otherwise, MgE and/or PrmE enhanced the plant's stress tolerance and increased the aforementioned attributes under normal or stress conditions. Moreover, MgE and/or PrmE increased enzymatic activities (SOD, CAT, POX, and APX) and antioxidant levels (proline, glutathione, ascorbate, and α -tocopherol) under the studied stresses compared to untreated controls. The combined MgE+PrmE was the most efficient treatment. Salinity considerably increased Na⁺ content, whereas, MgE+PrmE treatment reduced Na content by 39.6, 16.7, or 37.0% under salinity, drought, or Cd²⁺ stress, respectively. Under Cd²⁺ stress, the best treatment (MgE+PrmE) reduced root and leaf Cd²⁺ contents by 74.1 and 78.6%, respectively compared to untreated plants. Our findings indicated that foliarly-applied MgE+PrmE was highly effective in enhancing the antioxidant machinery, thus reducing ROS, Na⁺, and Cd²⁺ levels resulting in increased plant productivity under salinity, drought, or Cd2+ stress.