ABSTRACT

البحث الثانى

Mohammed, A. E.; Abdalhalim, L.R.; Atalla, K.M.; Mohdaly, A.A.A.; Ramadan M.F.; Abdelaleim Y. F., (2023). Chitosan and sodium alginate nanoparticles synthesis and its application in food preservation. Rendiconti Lincei. Scienze Fisiche e Naturali 34(2):415–425.	البحث الثاني	
مشترك مع آخرين داخل التخصص _ منشور		
مستخلص من رسالة	Z	

Title	Chitosan and sodium alginate nanoparticles synthesis and its application in food preservation.
Participants	Asmaa E. Mohammed ¹ . Laila R. Abdalhalim ¹ . Khaled Mohamed Atalla ¹ . Adel Abdelrazek Abdelazim Mohdaly ^{2,3} . Mohamed Fawzy Ramadan ³ . Yasser Fathy
	Abdelaliem ¹ .
	¹ Agricultural Microbiology Department, Faculty of Agriculture, Fayoum University, Faiyum, Egypt ² Food Science and Technology Department, Faculty of Agriculture, Fayoum University, Faiyum, Egypt
	³ Plant Production and Processing Department, Food Management Course, Agricultural Faculty, University
	of Applied Sciences Weihenstephan-Triesdorf, Triesdorf, Germany
	⁴ Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box
	7067, Makkah 21955, Saudi Arabia.
Journal	Rendiconti Lincei. Scienze Fisiche e Naturali 34(2):415–425.

ABSTRACT

Nano-chitosan and nano-sodium alginate were prepared. Transmission electron microscopy was used to test the nanochitosan and nano-sodium alginate morphology and their effects against pathogens and microorganisms. Nano-chitosan and nano-sodium alginate were evaluated as edible coating to improve the microbiological quality of Ras and soft white cheeses during ripening. Nano-chitosan showed maximum antibacterial and antifungal activities with an inhibition zone of 29 mm for *Staphylococcus aureus* and 12 mm for *Aspergillus niger*. Sodium alginate nanoparticles treated with 2% acetic acid showed a higher antimicrobial impact than 1% and 1.5% glacial acetic acid at 40 mg/mL. The minimum inhibitory and lethal concentrations of nano-chitosan and nano-sodium alginates were 40, 80 mg/mL, and 80, 160 mg/mL for *Staph. aureus* and *Sal. enteritidis*, respectively. The highest decreasing percentage of yeast and fungi was observed in Ras cheese coated with nano-sodium alginate. Chitosan and sodium alginate nanoparticles' edible coating might be promising in food preservation.