Ecological Studyon three major Insect Pests of Tomato PlantationsInFayoumGovernorate.

Narmen A. Youssef

Department of Plant Protection, Faculty of Agriculture, Fayoum University, Fayoum, Egypt

ABSTRACT

Tutaabsoluta(Meyrick), *Nesidiocoristenuis*(Reuter) and *Bemisiatabaci* (Genn.) activities on tomato plants at Fayoum Governorate were evident during (nili and summer 2011/2012 & 2012/2013). The highest number of immature stages (larvae) of *Tuta* occurred in November & December 2011 and 2012 (37 and 25 indiv./10 leaves) respectively during nili plantation , while the numbers of this insect were decreased during the summer plantation 2012 , the highest number recorded on June (20 indiv. / 10 leaves). There was highly significant correlation between the *Tuta* population and mean temp. duringnili plantation 2011 . On the other hand, the highest populations of *B.tabaci* (97 and 70 indiv./ 10 leaves) was recorded in 2nd and 4th week of Oct. during (nili 2011/2012) and (81 and 64 nymphs / 10 leaves) in 2nd week of June and July (summer 2012/2013), respectively.For *N. tenuis*, the highest number (47 ; 39; 50 and 39 individuals / 10 leaves) occurred during 1st and 2nd week of October during nili 2011 & 2012 and 2nd week of June, 1st week of July during summer 2012/2013, respectively. Also, sixspecies of predators were recorded in association with tomato plants,*Orius sp., Chrysopavulgaris*, *Syrphuscorella*, *Coccinellaundecimpunctata*, *Mantis religiosa* and *Paedrusalfierii*.

Key words: Ecological Studies ; Insect Pests ; Tomato

INTRODUCTION

Tomato ,*Lycopersicomesculentum* L. is the main host plant of different pests , namely : some lepidapteransLepidoptera(leafminers), whiteflies, aphids and mealybug which cause considerable damage to both quantity and quality of the fruits(**Faragalla**, **2005 andCheerapha 2005**). According to **Barrientos***et al.*, **1998 and EPPO 2005** the tomato leafminer, *Tutaabsoluta* (Meyrick), (Lepidoptera: Gelechiidae) isone of the most devastating pests for tomato crops. due to the serious damage inflicted to tomato in invaded areas where infestation was initially detected(**Germain***et al.*, **2009**). without control measures , the pest can cause up to 80- 100% yield losses where leaves, flowers, stems and especially fruits were attacked(**Lopez**, **1991 and Andrew***et al.*, **2013).**the tomato plant bug, *Nesidiocoristenuis*(Reuter) (Hemiptera : Miridae)

and the tomato whitefly *Bemisiatabaci* (Genn.) (Hemiptera :Aleyrodidae) were also particularly important pests and were the major cause of the reduction in tomato production. **(Cheerapha 2005)**.*B.tabaci* direct damage is by sucking and devitalizing of plants, besides the spreading of leaf curlvirus disease that leads to huge loss of crop . **(Chaudhuriet al., 2001)**. During the past few years, high infestations of these pests were noticed in different regions in Egypt including Fayoum, where tomato crop which is considered one of the economically important produce of this governorate.

Therefore, the aim of the present study is to evaluate the population dynamics of these three major pests in tomato plantations in Fayoum in relation to the major prevailing weather factors (mean temperatures and mean relative humidity) during nili and summer seasons of 2011-2013.

MATERIALS AND METHODS

Experimentationwas carried out in Al- Mandara region, Fayoum Governorate, Egypt to evaluate the population fluctuations of immature stages of *T.absoluta*, and *B. tabaci* and of the nymphs and adults of *N. tenuis* in tomato (variety Helal) during four successive nili and summer plantations 2011/2012 and 2012/2013.

For this purpose, achosen area of about ¼ feddanwasindivided into four equal as a plots randomized complete block design. Tomato was cultivated as usual in two successive annual plantations (nili and summer seasons).

The data for the maximum and minimum temperatures and for relative humidity were obtained from the Meteorological Station of Fayoum Governorate. The usual agricultural practices were practiced excluding pesticide treatments.

Estimation of population :

Inspection of tomato leaf samples started two weeks after seedling plantation and continued weakely until the end of the season such samples were taken in the early morning ,ten leaves per plot , picked randomly from different levels of the plants and separately transferred in special bags to the laboratory. The number of pests and predators contained in each samples

was counted in the same day by the aid of asteremicroscope. The total number of individuals of *N.tenuis* (nymphs and adults), *B.tabaci*(nymphs stages) and predators present were also counted. *T. absoluta* was counted as larvae and empty mines on the leaves.

Statistical analysis

The relationship between the populations of the insects recorded and prevailing weatherfactors(Temp.&R.H%) were obtained by using the simple correlation, **(Snedecor and Cochran, 1990)**.

RESULTS AND DISCUSSION

A. Population dynamics of T.absoluta

Nili plantations 2011 and 2012 :

Few numbers appeared during the period from late October to mid November(2011) ranging between 2-7 indiv./10 leaves. The population increased in the last week of November till reached a peak (26 indiv. /10 leaves), and a 2^{nd} peak (37 indiv./10 leaves) on December 6 (2011). Positive highly significant correlation was found between the total population and mean temp. (r=0.64**)and relative humidity(r=0.62**) as shown intable 1 and fig. 1 .Also in 2012 the 1^{st} but smaller peak (11 indiv. /10 leaves) on Oct.7. the 2^{nd} peak occurred in late Nov. (25 indiv./10 leaves). There was no significant relation between the numbers of insectsin this caseand the means of temp. and R.H.% (r=-0.41 and -0.24) as shown in table 1 and fig 1.

Summer plantations 2012 and 2013 :

This insect was mostly found during the period from Apr. 28 to July 9 of 2012. The 1st peak occurred on Apr. 28 (10 indiv. /10 leaves), also the 2ndpeak was found on May 18(14 indiv./10 plants) and the 3rd peak (20 indiv. /10 leaves) occurred on June 10 .Apositive insignificant correlation was found between the insect population and mean temp. and R.H. (r=0.16 and 0.054 , respectively). During 2013, few numbers of this insect was found. The population fluctuated between 2 and 9 indiv./10 leaves . Also , insignificant correlation was found (r=0.299 and -0.24) as shown in table 2andfig 2.

3

		Nili 2012							
Sampling	Immature	Mines	Weathe	r factors	Sampling	Immature	Mines	Weathe	r factors
date	(Larvae)	Empty	Mean	Mean R.H%	date	(Larvae)	Empty	Mean	Mean
			Temp.°c					Temp.°c	R.H%
14/8/2011	0	1	31	50	26/8/2012	0	0	31.3	50
21/8	0	0	31	48	3/9	0	0	30	49
28/8	1	3	30.7	47	10/9	0	0	29.6	50
4/9	0	1	29	50	17/9	0	0	28.5	48
11/9	0	0	29.3	49	23/9	0	1	29	50
18/9	0	0	29.4	46	30/9	0	0	29	52
25/9	0	0	28.9	49	7/10	11	0	29	52
2/10	0	0	26	51	14/10	0	0	28.5	50
9/10	0	0	25.9	49	21/10	0	0	29.8	48
16/10	0	0	24.7	49	28/10	4	0	27.5	48
25/10	7	0	23	54	4/11	0	0	27.5	47
1/11	4	2	22	53	11/11	0	0	23	47
8/11	0	0	22.2	53	18/11	1	0	20.5	45
15/11	2	8	19.5	55	25/11	25	15	19.4	45
22/11	26	6	19.9	51	2/12	4	9	19.4	45
29/11	9	3	17	56	9/12	10	12	19.4	49
6/12	37	10	16.4	61	16/12	5	18	17.7	49
13/12	23	15	15.4	62	23/12	6	14	17.7	49
21/12	15	8	16.9	60	30/12	3	7	16.9	49
27/12	8	13	16.9	61	6/1/2013	4	11	12	50
4/1/2012	3	6	15	61					
Total	135	76			Total	73	87		
Mean	6.43	3.62			Mean	3.65	4.35		

Table (1): Weekly numbers of Immature stage and mines of *Tutaabsoluta* /10 leaves of tomato during Nili plantations 2011 & 2012.

Fig. (1): Weekly numbers of Immaturestageand mines of *Tutaabsoluta* /10 leaves of tomato during Nili plantations 2011 & 2012

•	S	12		Summer 2013					
Sampling	Immature	Mines	Weather factors		Sampling	Immature	Mines	Weath	er factors
date	(Larvae)	Empty	Mean Temp [°] c	Mean R.H%	date	(Larvae)	Empty	Mean Temp°c	Mean R.H%
21/4/2012	0	0	20.5	49	29/4/2013	1	4	22.3	45
28/4	10	13	19	32	7/5	0	2	25.4	45
4/5	5	7	22.9	48	16/5	0	0	29.3	43
11/5	4	5	23.6	43	22/5	3	10	28	43
18/5	14	8	27.7	52	29/5	3	7	30	41
26/5	7	1	29.7	42	5/6	2	1	31.8	41
3/6	6	2	27	44	12/6	0	1	32.8	42
10/6	20	13	29	47	19/6	7	13	30.8	43
17/6	14	27	30.5	43	26/6	5	5	30	45
24/6	7	10	31	42	3/7	9	7	32.3	44
1/7	5	8	31.4	46	9/7	0	0	29.8	45
9/7	4	7	31	49	16/7	0	0	31	47
16/7	0	1	30.7	40	23/7	0	2	30	48
Total	96	102			Total	30	52		
Mean	7.38	7.85			Mean	2.3	4		

Table (2): Weekly numbers of Immaturestageand mines of *Tutaabsoluta* /10 leaves of tomato during Summer plantations 2012& 2013.

Fig. (2): Weekly numbers of Immaturestageand mines of *Tutaabsoluta* /10 leaves of tomato during Summer plantations 2012& 2013.

Similar result was reported by Lazgeen et al., 2013 in Iraq. where the number of mines started low in May and June and increased during August and September. The maximum number of leafminerstrating from late July .increasing of larvae numbers on leaves caused high infestation (72-100 %) in September .

Also Nannini*et al*, (2011) in Italy found that the highest levels of tomato borer infestation occure in spring (30- 100 larvae / plant).

B. Population dynamics of *B. tabaci* Nili population 2011 and 2012 :

Infestation was observed in samples taken during the period from Sept. 4 to Nov. 22, 2011. The 1^{st} peak occurred on Sept. 18 (81 indiv. / 10 leaves) and the 2^{nd} peak on Oct 9 (97 indiv./10 leaves). Insignificant correlation was found between this population density and mean temp. (r=0.39) with a negative significant effect of relative humidity (r=-0.51).

In 2012, the population began with 5 indiv./10 leaves on Sept. 3, then fluctuated reaching the 1^{st} peak on Oct. 14 (66 indiv./10 leaves), and the 2^{nd} peak on Oct. 28 (70 indiv./10 leaves) then laterdecreased to 3 indiv. /10 leaves on Dec. 2nd. A positive highly significant correlation was found between population and mean temp. (r= 0.57**). Insignificant with relative humidity effect (r=0.31). as shown in table 3and fig.3.

Summer population 2012 and 2013 :

Throughout the period from Apr. 21 to June 24 (2012), the population fluctuated reaching a single peak in June 10 (81 indiv./10 leaves). The correlation between population and mean temp. r=0.078 ,and R.H.% was insignificant with r=0.11.

Infestation in 2013 was spread, allover the season. The highest density occurred during June and July with two peaks on June 12 and July 9 (44 and 64 indiv./10 leaves) respectively. Positive highly significant correlation was found between .population and mean temp. (r=0.71**) mean while , for relative humidity a negative insignificant correlation was found with r=-0.032 (Table 4 fig 4).

		11	Nili 2012						
Sampling	B. tabaci	<i>N</i> .	Weather factors		Sampling	B. tabaci	<i>N</i> .	Weather factors	
date	(nymph)	tenuis	Mean Temp.c	Mean	date	(nymph)	tenuis	Mean	Mean
		(N+A)		R.H%			(N+A)	Temp.°c	R.H%
14/8/2011	0	5	31	50	26/8/2012	0	3	31.3	50
21/8	0	12	31	48	3/9	5	7	30	49
28/8	0	11	30.7	47	10/9	17	13	29.6	50
4/9	3	24	29	50	17/9	19	16	28.5	48
11/9	26	22	29.3	49	23/9	9	15	29	50
18/9	81	33	29.4	46	30/9	55	15	29	52
25/9	78	34	28.9	49	7/10	60	26	29	52
2/10	83	47	26	51	14/10	66	39	28.5	50
9/10	97	13	25.9	49	21/10	50	5	29.8	48
16/10	79	7	24.7	49	28/10	70	5	27.5	48
25/10	37	5	23	54	4/11	40	6	27.5	47
1/11	29	0	22	53	11/11	15	3	23	47
8/11	10	0	22.2	53	18/11	7	1	20.5	45
15/11	2	0	19.5	55	25/11	3	7	19.4	45
22/11	2	2	19.9	51	2/12	3	2	19.4	45
29/11	0	0	17	56	9/12	0	5	19.4	49
6/12	1	2	16.4	61	16/12	0	3	17.7	49
13/12	0	0	15.4	62	23/12	0	1	17.7	49
21/12	0	0	16.9	60	30/12	0	0	16.9	49
27/12	0	0	16.9	61	6/1/2013	0	0	12	50
4/1/2012	0	0	15	61					
Total	528	217			Total	419	172		
Mean	25.14	10.33			Mean	20.95	8.6		

 Table (3): Weekly numbers of Bemisiatabaci&Nesidocoristenuis /10 leaves of tomato during Nili 2011 & 2012

N= nymph A=Adult

Fig. (3): Weekly numbers of Bemisiatabaci&Nesidocoristenuis /10 leaves of tomato during Nili 2011 & 2012

Table (4): Weekly numbers of Bemisiatabaci&Nesidocoristenuis /10 leaves of tomato during Summer 2012 &2013

		Summ	er 2012			Summer 2013			
Sampling	B. tabaci N. Weather factors			Sampling	B. tabaci	<i>B. tabaci N.</i> Weather factor			
date	(nymph)	tenuis	Mean	Mean	date	(nymph)	tenuis	Mean	Mean
		(N+A)	Temp.c	R.H%			(N+A)	Temp.°c	R.H%
21/4/2012	7	4	20.5	49	29/4/2013	0	0	22.3	45
28/4	13	19	19	32	7/5	0	15	25.4	45
4/5	10	29	22.9	48	16/5	12	23	29.3	43
11/5	29	33	23.6	43	22/5	29	28	28	43
18/5	50	37	27.7	52	29/5	21	27	30	41
26/5	70	14	29.7	42	5/6	30	4	31.8	41
3/6	77	0	27	44	12/6	44	7	32.8	42
10/6	81	4	29	47	19/6	40	13	30.8	43
17/6	23	50	30.5	43	26/6	49	5	30	45
24/6	8	20	31	42	3/7	62	39	32.3	44
1/7	0	27	31.4	46	9/7	64	24	29.8	45
9/7	0	28	31	49	16/7	40	4	31	47
16/7	0	13	30.7	40	23/7	18	1	30	48
Total	368	278			Total	409	190		
Mean	28.31	21.38			Mean	31.46	14.62		

Fig. (4): Weekly numbers of Bemisiatabaci&Nesidocoristenuis /10 leaves of tomato during Summer 2012 & 2013

In this respect contradictingresults were reported by several investigated in Egypt where largest counts were observed in September;August to October;September to November and September by(Shanab and Awad- Allah, 1982);(Shaheen, 1983;Shalaby*et al.*, 1990)(Abd-Ellah, 1994) and(Tantaway, 1995)respectively.

C-Population dynamics of N. tenuis

Nili population 2011 and 2012 :

This tomato bug was abundant during the period from Aug. 14 to Oct. 25 (2011). With twopeaks ; the 1st occurred in Sept. 4 with 24 indiv. /10 leaves , and the 2nd peak occurred on Oct. 2 with 47 indiv./ 10 leaves . Highly significant correlation was found between the population density of this insect species and mean temp. and relative humidity ($r=0.64^{**}$ and - 0.59^{**} respectively).

The population fluctuated but in few numbers ,with a small peak (16 indiv./10 leaves) on Sept. 17, and a higher peak on Oct. 14 (39 indiv./10 leaves).Highly significant correlation was found between population and mean temp. ($r=0.58^{**}$) whereas the relationship with relative humidity was positively significant with $r=0.5^{*}$ (Table 3 fig 3).

Summer population 2012 and 2013 :

During summer plantation 2012, the insect was spread allover the summer season. The highest density occurred in mid May and mid June with two peaks on May 15 and June 17 (37 and 50 indiv./ 10 leaves, respectively). Positive insignificant correlation was found between population and both mean temp. and relative humidity (r=0.17 and 0.11, respectively).

In summer plantation 2013, infestation occurred from the 1^{st} week of May to late July, with two peaks, on May 22 (28 indiv. / 10 leaves) and on July (39 indiv. /10 leaves). Positive insignificant correlation was found between populationboth mean temp. and relative humidity (r=0.18 and -0.35, respectively) as shown in table 4 fig 4.

Similar corelations were reported by AL-Azawi and AL-Azawi (1988) in Iraq andAbd-Ellah (1994) in Egypt , this tomato bug attacks tomato plants nearly all over the year, and that population

fluctuation was high during summer season (June – September) then the rates of infestation drop sharply during December and January.

D- The relationship between insect population and predators :

Nili plantations 2011 and 2012 :

The population of predaceous insects was relatively at low level during nili plantations 2011 &2012, therefore predation was not effective against the insect pests. as shown in Table 5 Fig 5.

Summer plantations 2012 and 2013 :

The population of predaceous insects was high especially in summer 2013. The total number of predators fluctuated during the period from April 28 and May 7 to July 1 and 23 with total number ranging between 1-6 indiv./10 leaves , the highest level of predaceous number was (6 indiv./ 10 leaves) during July 17 and 9 through summer 2012\2013 , within the activity period of *T. absoluta*, *B. tabaci* and *N. tenuis* were found. as shown in Table 6 Fig 6

Table (5): Weekly numbers of tomato pests and associated natural enemies during Nili plantations 2011 &2012

		1	Nili 2012						
Sampling date	T. absoluta	B. tabaci	N. tenuis	Natural enemies	Sampling date	T. absoluta	B. tabaci	N. tenuis	Natural enemies
14/8/2011	0	0	5	0	26/8/2012	0	0	3	0
21/8	0	0	12	0	3/9	0	5	7	0
28/8	1	0	11	0	10/9	0	17	13	0
4/9	0	3	24	0	17/9	0	19	16	0
11/9	0	26	22	0	23/9	0	9	15	0
18/9	0	81	33	1	30/9	0	55	15	1
25/9	0	78	34	1	7/10	11	60	26	2
2/10	0	83	47	1	14/10	0	66	39	0
9/10	0	97	13	0	21/10	0	50	5	0
16/10	0	79	7	0	28/10	4	70	5	1
25/10	7	37	5	1	4/11	0	40	6	0
1/11	4	29	0	0	11/11	0	15	3	0
8/11	0	10	0	0	18/11	1	7	1	1
15/11	2	2	0	0	25/11	25	3	7	4
22/11	26	2	2	0	2/12	4	3	2	2
29/11	9	0	0	1	9/12	10	0	5	2
6/12	37	1	2	0	16/12	5	0	3	0
13/12	23	0	0	0	23/12	6	0	1	0
21/12	15	0	0	0	30/12	3	0	0	0
27/12	8	0	0	2	6/1/2013	4	0	0	0
4/1/2012	3	0	0	0					
Total	135	528	217	7	Total	73	419	172	13
Mean	6.43	25.14	10.33	0.33	Mean	3.65	20.95	8.6	0.65

Fig (5): Weekly numbers of tomato pests and associated natural enemies during Nili plantations 2011 & 2012

Table (6): Weekly numbers of tomato pests and associated natural enemies during Summer plantations2012 & 2013

	S	Summer 2013							
Sampling	Т.	В.	N. tenuis	Natural	Sampling	Т.	В.	<i>N</i> .	Natural
date	absoluta	tabaci		enemies	date	absoluta	tabaci	tenuis	enemies
21/4/2012	0	7	4	0	29/4/2013	1	0	0	0
28/4	10	13	19	2	7/5	0	0	15	1
4/5	5	10	29	2	16/5	0	12	23	2
11/5	4	29	33	2	22/5	3	29	28	5
18/5	14	50	37	2	29/5	3	21	27	4
26/5	7	70	14	2	5/6	2	30	4	5
3/6	6	77	0	0	12/6	0	44	7	1
10/6	20	81	4	5	19/6	7	40	13	2
17/6	14	23	50	6	26/6	5	49	5	5
24/6	7	8	20	1	3/7	9	62	39	5
1/7	5	0	27	1	9/7	0	64	24	6
9/7	4	0	28	0	16/7	0	40	4	3
16/7	0	0	13	0	23/7	0	18	1	1
Total	96	368	278	23	Total	30	409	190	40
Mean	7.38	28.31	21.38	1.76	Mean	2.3	31.46	14.62	3.07

Fig (6): Weekly numbers of tomato pests and associated natural enemies during Summer plantations 2012 & 2013

REFERENCES

Abd-Ellah, S.H.A. (1994). Ecological studies on some important tomato insect pests and the susceptibility of different varieties of tomato to pests infestation. M. Sc. Thesis, Fac. Of Agric., Ain Shams Univ.

AL-Azawi, B.M. and AL-Azawi, A.F.(1988). Some observations on the tomato bug *Engytatustenuis*Reut, (Miride:Hemiptera) in Baghdad Iraq J. Agric. Sci., ZANCO, 6(3): 85-88.

Andrew, G.S. Cuthbertson; James J. Mathers; Lisa F. Blackburn; AnastasiaKorycinska;
 Weigiluo, Robert; J.Jacobson and Phil Northing (2013). Population development of
 Tutaabsoluta (Meyrick) (Lepidoptera :Gelechiidae) under simulated UK glasshouse conditions.
 Insects, 4: 185-197.

Barrientas, Z.R., Apablaza H.J., Norero, S.A. andEstay, P.P. (1988).Temperature base y constant termica de desarrollo de la polilla del tomate*Tutaabsoluta* (Lepidoptera :Gelechiidae) Ciencia e Investigation Agraria 25: 133-137.

Chaudhuri,N., D.C. Deb and Senapati, S.K. (2001). Biology and fluctuation of whitefly (*Bemisiatabaci*Genn.) population on tomato as influenced by a biotic factors under terai region of west Bengal. Indian J. Agric. Res., 35(3): 155-160.

Cheerapha, P.(2005). Thesis on effectiveness of local entomopathogenic fungi as bioinesticide for tomato insect pests. M.Sc. Thesis, Kasetsart University.

EPPO, (2005). Data sheet Tutaabsoluta. OEPP/EPPO Bulletin 35: 434-435.

Fargalla, F.H.H. (2005).New approach for controlling some pests which infesting cucurbitaceae. M.Sc. Thesis, Fac. Of Sci., Mansoura Univ., 155pp.

Germain, J.F., Lacordaire, A.I., Concquempot, C., Ramel, J.M. and Oudard E. (2009). Un nouveau ravageur de la tomate en France: *Tutaabsoluta*. PHM- Revue Horticole 512: 37-41.

Lazgeen, H.A., Feyroz, R.H., Halgurd, R. I. and Salah, A. S.2013 .Population density of tomato leafminer*Tutaabsoluta* (Meyrick)(Lepidoptera:Gelechidae) under plastic houses conditions . Journal of Agriculture and veterinary science , s, 7-10.

Lopez, E. (1991).Polliadeltomate: Proplema critic para la rentabilidaddelcultivo de verano. Empresa y Avance Agricola 1: 6-7.

Nannini,M., Alzori, F., Foddi, F., Pisci, R. and Sanna, F. 2011. A survey of *Tutaabsoluta* (Meyrick)(Lepidoptera:Gelechidae) outbreaks in tomato green houses in southern Sardinia (Italy). XXVIII. International Horticultural Congress on Science and Horticulture for People (IHC 2010): International Symposium on Plant Protection.

Shaheen, A.H.(1983). Some ecological aspects of the whitefly, *Bemisiatabaci* (Genn.) on tomato. Bull. Soc. Ent. Egypt, 62: 83-87.

Shalaby, F.F., Abdel-Gawaad, A.A., EL-Sayed, A.M. and Abo-EL-Ghar, M.R. (1990). Natural role of *Eretmocerus mundus* Mercet and *Prospaltellalutea* Masi on populations of *Bemisiatabaci*Genn. Agric. Res. Rev. Cairo, 68(1): 197-208.

Shanab, L.M. and Awad-Allah, S.S.(1982). Studies on thewhitefly, *Bemisiatabaci* (Genn.).infesting tomato at Mansoura district, Egypt. ActaPhytopathogica Academic SclentiarumNugaricae , 17(112) = 147-155.

Snedecor, W. and Cochran, W. (1980). Statistical methods. Iowa State University Press, Amerlowa, USA

Tantawy, Maha , A. (1995). Monitoring of *Bemisiatabaci* (Genn.) population on certain crops and its control. M. Sc. Thesis, of Agric. Cairo Unv.

الملخص العربي در إساتايكو لوجية لثلاثة افات حشرية تهاجمنبا تاتالطماطمف محافظة الفيوم نار مينأحمديو سف قسموقاية النبات - كلية الزراعة - جامعة الفيوم تماجر اءدر اساتابكولو جبةلتقدير تعدادو نشاطثلاثة افات حشربة مر تبطةبنباتالطماطمفدمحافظةالفيو مخلالموسمى (٢٠١٢ / ٢٠١٢ و ٢٠١٢ / ٢٠١٣). تمتسجيلا علىتعدادلير قاتحشرة Tutaabsoluta في العروة النيلي للموسمين ٢٠١١ و ٢٠١٢ فىنوفمبرودىسمبر (بمعدل ٣٧،٢٥فرد/١٠ اوراق) علىالتو الىبينمااظهرت الدراسه انخفاضالتعدادخلالالموسمالصيفى ٢٠١٢ حيثسجلا علىتعداد للحشر ةفديونيو (٢٠ فرد/ • (اور إق). بينما اظهرت الدر إسه في العروة النيلي للموسمين محل الدر اسه إن أعلىتعدادللاطوار الغير كامله لحشرة Bemisiatabaci (۹۷ و ۷۰ فرد /۱۰اوراق) ف الاسبو عالثانيو الرابعمن اكتوبرو (٨١ و ٢٤ فرد/١٠ اوراق) فسالاسبو عالثاندمنيونيةويوليو خلالالموسم الصيفي٢٠١٢ و ٢٠١٣ علىالتوالي. هذاو قدسجلتحشر ةNesidocoristenuis أعلىتعدادلها (٤٧ و ٥٠ و ٣٩ فرد/١٠ اوراق)فىالاسبو عالاولوالثانىمناكتوبر خلال الموسم النيلي ١١٠٦ و ٢٠١٢. والاسبو عالثاندمنيو نية، الاسبو عالاو لمنبو لية خلال الموسم الصيفي ٢٠١٢ و ٢٠١٣ علىالتوالي. و قدتمتسجبلعددمنالمفتر ساتالمصاحبةلهذةالحشر اتوكاناهمهاابو العبدذو احدىعشر نقطة،ذبابةالسر فب

س،بقةالاوريس،اسدالمن،الرواغة،فرسالنبي.

الكلمات الداله : در اسات ايكولوجيه ; الافات الحشريه ; الطماطم