
High Speed Special Function Unit for Graphics

Processing Unit

Abd-Elrahman G. Qoutb1 , Abdullah M. El-Gunidy1, Mohammed F. Tolba1, and Magdy A. El-Moursy2

1Electrical Engineering Department, Fayoum University, Fayoum, Egypt.
2Design Creation Division, Mentor Graphics, Cairo, Egypt.

Emails: ag1186@fayoum.edu.eg, elgunidy@gmail.com, mf1173@fayoum.edu.eg, magdy_el-moursy@mentor.com

Abstract— A fixed-point ASIC design for high-speed, second-

order, piecewise function approximation is presented. A Non-

Uniform segmentation method based on Minimax approximation

is used to get the interpolation coefficients. Non-Uniform

segmentation, effectively, reduces the size of the coefficient table

with a small area overhead for the address encoder. The proposed

algorithm truncates the binary coefficients within the pre-

allocated error. Radix-eight Booth multipliers are used to reduce

the number of partial products to, around one third of the

traditional multiplication, hence speeding up the evaluation

process. Very fast reduction trees with four-to-two compressors

are used to reduce the number of the resulting partial products.

Also, a new radix-eight sign template which reduces the overall

area of the multipliers is proposed. Hybrid carry-look ahead,

carry-ripple adders are, also, used. The design has been verified

on FPGA. Moreover, 45nm PDK is used to synthesize and layout

the design. A maximum propagation delay of 5.251ns is achieved

with a reduction of 19% in the total delay as compared to other

traditional methods. A total chip area of 0.014𝒎𝒎𝟐 is also

achieved.

Keywords—Special Function Unit (SFU), Nmeric Function

Generator (NFG), Vertix Shader Processor, GPU, Hybrid

Multiplier, Minimax, Non-Uniform Segmentation, Booth Multiplier.

I. INTRODUCTION

The graphics processor implements 3D graphics pipeline to

speed-up rendering. Rendering is the process of converting a 3D

scene into a 2D image to be displayed on a computer screen [1].

Modern graphics processors are composed of different building

blocks, such as Programmable Vertex Shader (PVS),

Programmable Fragment Shader (PFS), and basic circuits such

as the Power Management Unit [2]. PVS is responsible for

performing all per-vertex operations while PFS is responsible

for per-pixel operations. The block diagram for the Graphical

Processing Unit (GPU) is shown in Figure 1.

 Vertex Shaders are mainly composed of a Special Function

Unit (SFU), and a Single Instruction Multiple Data core

(SIMD). SIMD core is used to perform all kinds of matrix

operations which are needed in the graphics pipeline, where

SFU is dedicated to perform numeric functions. In this paper,

Special Function Unit (SFU) is designed to improve the

performance of the Graphical Processing Unit (GPU). SFU

implementation is based on non-uniform segmentation so the

area of LUT can be reduced.

Figure 1 Abstract Block Diagram of Graphics Processing Unit (GPU)

Function evaluation algorithms are divided into two main

categories; Iterative and Non-Iterative. Iterative methods are

based on the multiplication operation and typically have

quadratic convergence. They result in low latency, especially for

high precision computations [3]. In Non-Iterative methods,

specific operations are performed and the final value appears

with single constant error approximation, so it is commonly used

in Numeric Function Generators (NFGs). NFGs allow the

computation of difficult mathematical functions in short time

and with minimal hardware than the commonly employed

methods. They compute piecewise linear (or quadratic)

approximations that represent the value of the original function

for a given input value. The domain of the NFG is divided into

enough segments. The approximation results in errors which

should remain within a required range. The overall hardware

complexity and propagation delay depend on the number of the

required segments, the arithmetic devices which are used to

approximate the function, and the number of bits which are used

to represent the numbers being calculated.

Polynomial coefficients are stored in Look-Up Table (LUT).

The size of the LUT and the area of NFGs vary depending on

978-1-4799-8200-4/14/$31.00 ©2014 IEEE

2014 9th International Design and Test Symposium

24

mailto:ag1186@fayoum.edu.eg
mailto:elgunidy@gmail.com
mailto:mf1173@fayoum.edu.eg
mailto:magdy_el-moursy@mentor.com

the technique used to evaluate the function. Table-based

methods reduce the number of arithmetic operations but increase

the size of the LUT. Compute-bound methods, use a small LUT

but require a fair amount of arithmetic hardware. They also

require computation time to calculate the final function values.

Hybrid methods [4, 5], represent a good compromise between

computation resources and the table size. They are widely used

in many applications that require high-speed function

calculation [6].

This paper presents an enhanced Table-based method which

divide the domain of the function into Non-Uniform segments

to guarantee the required input approximation error. The

proposed technique adopts Hybrid multiplier and Wallace Tree

Multi-Operand Adder to determine the final result.

The paper is organized as follows; The design of Special

Function Unit is presented in section II where the modified Non-

Uniform Segmentation with Remapped addresses is presented.

The Hybrid-Multiplier is used to merge the use of Booth-Three

Partial Product Generator and is described in section III. The

Wallace tree to sum the generated partial products and the final

output using Multi-Operand Adder is presented in section IV.

Some simulation results are provided in section V. Some

conclusions are summarized in section VI.

II. SPECIAL FUNCTION UNIT

The SFU is responsible for evaluating the mathematical

functions which are used in the rendering pipeline. Among the

widely used mathematical functions in GPU are Cosine and Sine

functions which are heavily used to perform rotation operations

on matrices [1]. In addition, the reciprocal function is used for

the scaling matrix, and for perspective projection. Also, the

power function is used in the Phong lighting model. The

reciprocal of the square root function is used for calculating

vector normalization [2]. Some of the functions which are used

in the graphics applications are listed in Table 1. One of those

functions is used to evaluate the presented design.

Table 1 Examples of widely used SFU Functions

Non-Iterative methods are based on reducing the elementary

functions (such as the functions in Table 1 which are Examples

of widely used SFU Function) using polynomial approximation.

They involve approximating a continuous function with one or

more polynomials on a closed interval [a; b] with the use of

addition and multiplication in the processor. The degree of the

employed polynomial is usually high and a large number of

additions and multiplications must be performed to achieve high

precision. The stored polynomial coefficients are generated

using mathematical algorithms such as Chebyshev and Minimax

depending on parameters such as the degree of the polynomial

and the needed precision. Non-Uniform segmentation requires

remapping the input value to the target address by the Address

Encoder to get the polynomial coefficients. In addition, the

approximated result is determined as shown in the block

diagram in Figure 2. The main components of the interpolation

function hardware are (1) address encoder to take some of the

MSBs and return the address which has the interpolation

coefficients for that input, (2) Two Booth multipliers for C1 ,

C2 multiplication by X, (3) a squarer for X2, and (4) Multi-

operand adder which contains a reduction tree for reducing the

partial products and a hybrid carry-lookahead, carry-propagate

adder for the final product.

 Figure 2 Non-Uniform Segmentation Block Diagram

A. Non-Uniform Segmentation

In the piecewise function evaluation with polynomial

approximation, Non-Uniform segmentation can effectively

reduce the size of Look-Up Tables (LUT) for many arithmetic

functions as compared to uniform segmentation approaches.

This is achieved at the cost of the extra segment address (index)

encoder that results in area and delay overhead. Also, it is

observed that the Non-Uniform segmentation has a design

tradeoff between the ROM size and the area of the subsequent

arithmetic computation hardware. Non-Uniform segmentation

algorithm is adopted in this paper. The remapped addresses

which are proposed in [7] are assumed. The goal is to minimize

ROM, total area and overhead delay by searching for the optimal

segmentation scheme. For arithmetic functions which have a lot

of changes in the predetermined interval, the proposed

segmentation method achieves significant area reduction as

compared to the Uniform segmentation method.

The desired function is approximated by a second-order

Minimax polynomial on the desired interval. The interval is

2014 9th International Design and Test Symposium

25

divided into many equal-size intervals to get a reasonable trade-

off between the arithmetic circuits which are used in the

evaluation process, the LUT which is used to store the

interpolation coefficients, and the approximation error. All

equal-size intervals are passed through the algorithm which is

shown in Figure 3, where e is the approximation error, Si stands

for Uniform segment, Ci is the Non-Uniform segment and

Size(Ci) represents how many uniform segments in the Non-

Uniform segment Ci. This algorithm is used to reduce the

number of segments achieving less number of entries to be saved

in the LUT.

The algorithm starts with dividing the entire interval into

uniform segments then merge all the uniform segments, to

guarantee the approximation error, into Non-Uniform segments.

Non-Uniform segments are divided into power of two sizes then

sorted to make the indexing regular and avoid the use of

additional hardware.

Figure 3 Remapped Non-Uniform Segmentation Flow Chart

Maple is a commercial computer algebra system tool which

is used to generate the coefficients using Minimax() Function

provided by the tool. A new step is added to choose the

minimum widths for the coefficients which are stored in the

memory to achieve the target approximation error. This is done

by truncating the resulted coefficients to fixed widths, which

come from the Maple program to reduce the memory

requirement, while keeping the pre-specified approximation

error. This step is based on iterating over all the possibilities for

the coefficient widths, taking into account the error result due to

rounding in each case. The minimum width which achieves the

target approximation error that can be applied for each Non-

Uniform segment is chosen. To evaluate the function, the

polynomial equation needs to be performed. Hybrid multiplier

is used by applying the concept of Booth-Multiplier and Wallace

Tree as shown in Section III.

III. BOOTH-THREE PARTIAL PRODUCTS GENERATOR

Parallel multipliers are usually used in graphics processing

applications as they achieve high performance. Hence, they are

used for the evaluation of the polynomial equation (1) of degree

two, where 𝐶0, 𝐶1 and 𝐶2 are the polynomial coefficients which

are stored in the LUT and generated by the Minimax

mathematical algorithm.

𝑓(𝑥) ≈ 𝐶0 + 𝐶1 𝑥 + 𝐶2 𝑥
2 (1)

High-Speed multipliers consist of high-radix Booth partial

products generator and carry-save tree to reduce the number of

the resulting partial products to two partial products. A carry-

propagate, or carry-look ahead, adders are widely used to

generate the final product [8]. A carry-look ahead adder is used

because the carry bit "i" is computed without waiting for carry

bit "i-1" (i=1,2,3,4, etc.) so solving the carry delay problem,

Booth-3 can decode every four bits of the multiplier generating

one partial product. This would reduce the number of the partial

products by a factor of three or four, with a small area overhead

of the Booth decoder. The number of the partial products which

are generated for 10-bit (m0 to m9) signed multiplier are shown

in Figure 4. For every four bits there is a code which is used to

generate one partial product except for the first three bits which

are added with ‘0’ bit to generate the first partial product, bit m9

is repeated twice to complete the fourth bit for the last partial

product pp3 without changing the multiplier value. Four partial

products are generated (pp0, pp1, pp2, pp3).

Figure 4 Multiplier Grouping for Booth-3 10-bit Signed Multiplier

2014 9th International Design and Test Symposium

26

A scalable, homogeneous, gate-level implementation of the

Booth-3 decoder is used [8] to guarantee low-power operation

and to achieve more regular layout and smaller area as shown in

Figure 5. The four bits are provided to the Booth-3 decoder to

generate the select iM signals. These signals are used to generate

each bit of the partial product after being passed to a function

with the multiplicand bits.

After the partial products are being generated, each partial

product is shifted logically by three bits, the 1st partial product

is shifted zero bits, the 2nd partial product is shifted by 3 bits and

the 3rd is shifted by 6 bits and so on. Sign extension for each

partial product is used to obtain correct results. This way is not

suitable for high performance because it increases the capacitive

load on the sign bit, hence increasing area and power

consumption, and finally, degrades performance.

Instead, there are ready-made sign-templates to avoid the

sign extension process. The one proposed in [8] works well for

signed multiplication, but the conditions for generating the sign

extension signal, called E, result in some area overhead. A

summary of these conditions is given here:

 Partial product is positive if S = 0.

 Partial product is negative if S = 1.

 E = 1 if the select bits select positive multiple and the

multiplicand is positive. Or if the select bits select

negative multiple and the multiplicand is negative. Or

finally if the select bits are +0.

 E = 0 if the select bits select positive multiple and the

multiplicand is negative. Or if the select bits select

negative multiple and the multiplicand is positive. Or

finally if the select bits are -0.

The Logic function which performs the sign extension signal

for the E is shown in Figure 6.

Figure 5 Partial Product Generator Block diagram.

Figure 6 Logic Circuit to Generate E for Booth-3

The proposed method is about pre-extending the

multiplicand by two additional bits to account for (3*M), and

then execute the same sign-template as if it is unsigned

multiplication as shown in Figure 7. The signal, C, is a copy of

the sign bit of the multiplicand after extension. S is the sign bit

of the select bits. This implementation increases the

performance and decreases the overhead area because there is

no need to use the logic for generating the E signal. The copy

signal, C, does not need a logic circuit to be generated, yet

ensuring right results. For the given example of 10-bit

multiplication, the proposed method saves four times the

overhead logic of generating the E signal. This improvement

increases as the number of partial products increases.

Figure 7 Proposed Sign Template for 10-bit Signed Multiplier

Another significant improvement in the proposed algorithm

is achieved by using a circuit to disable the power-hungry adder

circuitry in the case of generating∓3 ∗ 𝑀 when it is not used,

hence reducing the total power consumption as shown in Figure

8. There is no need to use a carry-propagate adder to generate

the hard multiple (∓3 ∗ 𝑀) = M + 2*M. given that it only

operates when the select bits choose ∓3 ∗ 𝑀. As all the

generated partial products need to be added together and the

final outputs from each multiplier are to be calculated, the need

of Multi-operand Adder is raised as discussed in section IV.

2014 9th International Design and Test Symposium

27

Figure 8 Proposed Circuit to Disable the Adder That Generates the

Hard Multiple, 3M.

IV. MULTI-OPERAND ADDER

Wallace Tree with Carry Propagate Adder achieves Multi-

Operand Addition with small area and propagation delay.

Wallace Tree is known for their optimal computation time when

adding multiple operands to two outputs using Half Adders, Full

Adders and 4:2 compressors. It is used to speed up the

computation by reducing the number of the sequential addition

stages. Using 4:2 compressor enhances the speed of the

multiplier leading to smaller number of stages in performing the

final result. The critical path delay using the compressor is

compared with Full-adders and Half-adders. The performance

of the Wallace Tree varies depending on the structure and how

many blocks are used in each stage. It is used here to add the

partial products in a tree-like fashion in order to produce two

rows of partial products that can be added in the last stage. The

tree structure and the stages to generate the final result for

summing the partial products are shown in Figure 9 where the

black dots represent the partial product bits. They are generated

by 10*10 Booth-3 partial product multiplier where 2, 3 and 4

bits are added with Half Adder, Full Adder and 4:2 compressors

to achieve the final value in three stages.

Figure 9 Wallace Tree Architecture for 10*10 Multiplier

The proposed design is prototyped and tested for the

function 1/ (1+x) using ASIC/FPGA flows. The results are

shown in section V.

V. SIMULATION RESULTS

The function 1/ (1+x) is implemented on the input interval

[0:1], with 2−13 ≈ 0.000061035 approximation error. The

coefficients are truncated to have savings in LUT with widths of

14, 18, 14 bits with maximum truncation error of 0.000061035.

The approximation coefficients C0, C1, and C2 are truncated to

14, 18, 14 bits, respectively as shown in Table 2. The number of

the Non-Uniform segments and the size of each segment are

shown in the table. The Non-Uniform segmentation for this

function resulted in 7 entries in the LUT compared to 13 entries

if Uniform segmentation is used.

Table 2 Maple Interpolation Coefficients for 1/ (1+x)

As an example of how to evaluate the function for a specific

input value to deal with fraction numbers, the input X value is

shifted by 29 and the output value is shifted by 213 and that is to

accomplish a result of error less than 2−13. As seen from these

random input values in Table 3 for the function 1/ (1+x). The

input value, the rounded input value after shifting back by 29,

the output value Z from the SFU and the rounded final result

after shifting back by 213 are shown in the table.

Table 3 Random Test Input Values

Input
X

Rounded
X X/29

Actual f(X)
Output

Z
Rounded
ZZ/213

Error
e

0 0 1 8191 0.999877 1.23*10−4

219 0.4277 0.700427 5736 0.700195 2.32*10−4

68 0.1328 0.882758 7230 0.88256 1.98610−4

28 0.0547 0.94813 7766 0.94799 1.410−4

178 0.3476 0.7420 6077 0.74182 1.7810−4

The design was implemented on Xilinx XC3S500E FPGA

to verify the output. ChipScope Pro is used for that purpose, and

the result of the implementation is shown in Table 4.

Table 4 FPGA Implementation Results
Logic utilization Used Available Utilization

Total No of 4 input LUT 1225 9312 13%

After synthesis

Max combinational path delay 18.514 ns

2.717 ns logic 2.717 ns route

After place and route

Max combinational path delay 27.825 ns

Segment
width

Start
segment

C0 C1 C2

16 0 0.9999389648 -0.9927825928 0.8372802734

16 16 0.9963989258 -0.935333252 0.5992431640

16 32 0.9868774414 -0.8586997986 0.4434814453

16 48 0.9722290039 -0.7798805237 0.3374023437

16 64 0.9537353516 -0.7055931091 0.2626342773

32 80 0.9228515625 -0.609462738 0.1877441406

32 112 0.8764038086 -0.5019607544 0.1256103515

2014 9th International Design and Test Symposium

28

 North Carolina State University (NCSU) 45 nm technology

PDK [9] is used for synthesis and layout. The layout report is

generated using Cadence SoC-Encounter and resulted in

maximum propagation delay of 5.251 ns as compared to 6.53 ns

for the Uniform segmentation method [10] and 6.70 ns for the

Hierarchical method [11] achieving a reduction of up to 19% of

the total propagation delay. A total chip area of 0.014 mm2is

also achieved.

VI. CONCLUSIONS

A new Special Function Unit for function evaluation is

proposed. The SFU is based on the Non-Uniform segmentation

and remapping algorithms. It was shown that the proposed

technique achieves the minimum-size coefficient table in

addition the amount of arithmetic units is improved due to the

use of an enhanced Non-Uniform segmentation algorithm and

Hybrid multiplier. The proposed design is faster than the

previously developed methods. The function 1/ (1+x) is

implemented to achieve the target accuracy of three digits after

the decimal point. A new sign template for Booth multipliers is

presented. The proposed technique improves the speed of these

multipliers by reducing the number of partial products with no

need to add specific hardware to develop the extended sign bit.

The presented method is tested on Booth-3 multipliers. The

Booth-3 multipliers reduces the partial products by three times

the original ones. Also, a circuit for reducing the power

consumption in the hard-multiple generation adder is proposed.

A Maple code is written to get the best coefficients widths for

truncation and storage in the LUT to minimize the memory size

used. CLAs are implemented as 4-bit modules and are used in a

hierarchical structure to realize adders that have multiples of 4-

bits. A maximum propagation delay of 5.251 ns with a reduction

of 19% as compared to other traditional methods is achieved.

The total chip area is 0.014 mm2.

REFERENCES

[1] J. R. Warner, "Real Time 3-D Graphics Processing Hardware Design
Using Field Programmable Gate Array" Masters Thesis, University of
Pittsburgh, September 2008.

[2] P.-H. Wu, C.-S. Wen and L.-Y. Chen, "Design Of A Programmable
Vertex Processor In Opengl ES 2.0 Mobile Graphics Processing Units,"
The IEEE Proceseedings of the International Symposium on VLSI Design,
Automation, and Test, pp. 1 - 4, April 2013.

[3] J.-M. Muller, "Elementary Functions: Algorithm And Implementation, "
2nd Ed., 2006.

[4] J.-A. Pineiro, S. F. Oberman, J. M. Muller, and J. D. Bruguera, "High
Speed Function Approximation Using A Minimax Quadratic Interpolator,
" The IEEE Transactions on Computers., vol. 54, no. 3, pp. 304–318,
March 2005.

[5] M. J. Schulte and E. E. Swartzlander, "Hardware Designs For Exactly
Rounded Elementary Functions," The IEEE Transactions on Computers,
vol. 43, no. 8, pp. 964–973, August 1994.

[6] B.-G. Nam, H. KIm, and H.-J. Yoo, " Power And Area-Efficient Unfied
Computation Of Vector And Elementary Functions For Handheld 3D
Graphics Systems, " The IEEE Transactions on Computers, vol. 57, no.
4, pp. 490–504, April 2008.

[7] S. F. Hsiao; H. J. Ko; Y. L. Tseng; W. L. Huang; S. H. Lin; C. S. Wen,
"Design Of Hardware Function Evaluators Using Low-Overhead
Nonuniform Segmentation With Address Remapping," The IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21,
no. 5, pp. 875-886, May 2013.

[8] G. W. Bewick, "Fast Multiplication: Algorithms And Implementation,"
Ph.D. Thesis, Stanford University, February 1994.

[9] "http://www.eda.ncsu.edu/wiki/NCSU_EDA_Wiki,"

[10] J.-A. Pineiro, S. F. Oberman, J. M. Muller, and J. D. Bruguera, “High
Speed Function Approximation Using A Minimax Quadratic
Interpolator,”The IEEE Transactions on Computers, vol. 54, no. 3, pp.
304–318, March 2005.

[11] D. Lee, R. C. C. Cheung, W. Luk, and J. D. Villasenor, "Hierarchical
Segmentation For Function Evaluation, " The IEEE Transactions on Very
Large Scale Integr. (VLSI) Systems, vol. 17, no. 1, pp. 103–116, January
2009.

2014 9th International Design and Test Symposium

29

