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Abstract— A fixed-point ASIC design for high-speed, second-

order, piecewise function approximation is presented. A Non-

Uniform segmentation method based on Minimax approximation 

is used to get the interpolation coefficients. Non-Uniform 

segmentation, effectively, reduces the size of the coefficient table 

with a small area overhead for the address encoder. The proposed 

algorithm truncates the binary coefficients within the pre-

allocated error. Radix-eight Booth multipliers are used to reduce 

the number of partial products to, around one third of the 

traditional multiplication, hence speeding up the evaluation 

process. Very fast reduction trees with four-to-two compressors 

are used to reduce the number of the resulting partial products. 

Also, a new radix-eight sign template which reduces the overall 

area of the multipliers is proposed. Hybrid carry-look ahead, 

carry-ripple adders are, also, used. The design has been verified 

on FPGA. Moreover, 45nm PDK is used to synthesize and layout 

the design. A maximum propagation delay of 5.251ns is achieved 

with a reduction of 19% in the total delay as compared to other 

traditional methods. A total chip area of 0.014𝒎𝒎𝟐 is also 

achieved. 

Keywords—Special Function Unit (SFU), Nmeric Function 

Generator (NFG), Vertix Shader Processor, GPU, Hybrid 

Multiplier, Minimax, Non-Uniform Segmentation, Booth Multiplier. 

I.  INTRODUCTION  

The graphics processor implements 3D graphics pipeline to 

speed-up rendering. Rendering is the process of converting a 3D 

scene into a 2D image to be displayed on a computer screen [1]. 

Modern graphics processors are composed of different building 

blocks, such as Programmable Vertex Shader (PVS), 

Programmable Fragment Shader (PFS), and basic circuits such 

as the Power Management Unit [2]. PVS is responsible for 

performing all per-vertex operations while PFS is responsible 

for per-pixel operations. The block diagram for the Graphical 

Processing Unit (GPU) is shown in Figure 1. 

 Vertex Shaders are mainly composed of a Special Function 

Unit (SFU), and a Single Instruction Multiple Data core 

(SIMD). SIMD core is used to perform all kinds of matrix 

operations which are needed in the graphics pipeline, where 

SFU is dedicated to perform numeric functions. In this paper, 

Special Function Unit (SFU) is designed to improve the 

performance of the Graphical Processing Unit (GPU). SFU 

implementation is based on non-uniform segmentation so the 

area of LUT can be reduced. 

 
Figure 1 Abstract Block Diagram of Graphics Processing Unit (GPU) 

Function evaluation algorithms are divided into two main 

categories; Iterative and Non-Iterative. Iterative methods are 

based on the multiplication operation and typically have 

quadratic convergence. They result in low latency, especially for 

high precision computations [3]. In Non-Iterative methods, 

specific operations are performed and the final value appears 

with single constant error approximation, so it is commonly used 

in Numeric Function Generators (NFGs). NFGs allow the 

computation of difficult mathematical functions in short time 

and with minimal hardware than the commonly employed 

methods. They compute piecewise linear (or quadratic) 

approximations that represent the value of the original function 

for a given input value.  The domain of the NFG is divided into 

enough segments. The approximation results in errors which 

should remain within a required range. The overall hardware 

complexity and propagation delay depend on the number of the 

required segments, the arithmetic devices which are used to 

approximate the function, and the number of bits which are used 

to represent the numbers being calculated. 

Polynomial coefficients are stored in Look-Up Table (LUT). 

The size of the LUT and the area of NFGs vary depending on 
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the technique used to evaluate the function. Table-based 

methods reduce the number of arithmetic operations but increase 

the size of the LUT. Compute-bound methods, use a small LUT 

but require a fair amount of arithmetic hardware. They also 

require computation time to calculate the final function values. 

Hybrid methods [4, 5], represent a good compromise between 

computation resources and the table size. They are widely used 

in many applications that require high-speed function 

calculation [6]. 

This paper presents an enhanced Table-based method which 

divide the domain of the function into Non-Uniform segments 

to guarantee the required input approximation error. The 

proposed technique adopts Hybrid multiplier and Wallace Tree 

Multi-Operand Adder to determine the final result. 

The paper is organized as follows; The design of Special 

Function Unit is presented in section II where the modified Non-

Uniform Segmentation with Remapped addresses is presented. 

The Hybrid-Multiplier is used to merge the use of Booth-Three 

Partial Product Generator and is described in section III. The 

Wallace tree to sum the generated partial products and the final 

output using Multi-Operand Adder is presented in section IV. 

Some simulation results are provided in section V. Some 

conclusions are summarized in section VI. 

II. SPECIAL FUNCTION UNIT 

The SFU is responsible for evaluating the mathematical 

functions which are used in the rendering pipeline. Among the 

widely used mathematical functions in GPU are Cosine and Sine 

functions which are heavily used to perform rotation operations 

on matrices [1]. In addition, the reciprocal function is used for 

the scaling matrix, and for perspective projection. Also, the 

power function is used in the Phong lighting model. The 

reciprocal of the square root function is used for calculating 

vector normalization [2]. Some of the functions which are used 

in the graphics applications are listed in Table 1. One of those 

functions is used to evaluate the presented design. 

 
Table 1 Examples of widely used SFU Functions 

 
 

Non-Iterative methods are based on reducing the elementary 

functions (such as the functions in Table 1 which are Examples 

of widely used SFU Function) using polynomial approximation. 

They involve approximating a continuous function with one or 

more polynomials on a closed interval [a; b] with the use of 

addition and multiplication in the processor. The degree of the 

employed polynomial is usually high and a large number of 

additions and multiplications must be performed to achieve high 

precision. The stored polynomial coefficients are generated 

using mathematical algorithms such as Chebyshev and Minimax 

depending on parameters such as the degree of the polynomial 

and the needed precision. Non-Uniform segmentation requires 

remapping the input value to the target address by the Address 

Encoder to get the polynomial coefficients. In addition, the 

approximated result is determined as shown in the block 

diagram in Figure 2. The main components of the interpolation 

function hardware are (1) address encoder to take some of the 

MSBs and return the address which has the interpolation 

coefficients for that input,  (2) Two Booth multipliers for C1  , 

C2 multiplication by X,  (3) a squarer for X2, and (4) Multi-

operand adder which contains a reduction tree for reducing the 

partial products and a hybrid carry-lookahead, carry-propagate 

adder for the final product.   

 
                 Figure 2 Non-Uniform Segmentation Block Diagram 

A. Non-Uniform Segmentation 

In the piecewise function evaluation with polynomial 

approximation, Non-Uniform segmentation can effectively 

reduce the size of Look-Up Tables (LUT) for many arithmetic 

functions as compared to uniform segmentation approaches. 

This is achieved at the cost of the extra segment address (index) 

encoder that results in area and delay overhead. Also, it is 

observed that the Non-Uniform segmentation has a design 

tradeoff between the ROM size and the area of the subsequent 

arithmetic computation hardware. Non-Uniform segmentation 

algorithm is adopted in this paper. The remapped addresses 

which are proposed in [7] are assumed. The goal is to minimize 

ROM, total area and overhead delay by searching for the optimal 

segmentation scheme. For arithmetic functions which have a lot 

of changes in the predetermined interval, the proposed 

segmentation method achieves significant area reduction as 

compared to the Uniform segmentation method. 

The desired function is approximated by a second-order 

Minimax polynomial on the desired interval. The interval is 
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divided into many equal-size intervals to get a reasonable trade-

off between the arithmetic circuits which are used in the 

evaluation process, the LUT which is used to store the 

interpolation coefficients, and the approximation error. All 

equal-size intervals are passed through the algorithm which is 

shown in Figure 3, where e is the approximation error, Si stands 

for Uniform segment, Ci is the Non-Uniform segment and 

Size(Ci) represents how many uniform segments in the Non-

Uniform segment Ci. This algorithm is used to reduce the 

number of segments achieving less number of entries to be saved 

in the LUT. 

The algorithm starts with dividing the entire interval into 

uniform segments then merge all the uniform segments, to 

guarantee the approximation error, into Non-Uniform segments. 

Non-Uniform segments are divided into power of two sizes then 

sorted to make the indexing regular and avoid the use of 

additional hardware. 

 

Figure 3 Remapped Non-Uniform Segmentation Flow Chart 

Maple is a commercial computer algebra system tool which 

is used to generate the coefficients using Minimax() Function 

provided by the tool. A new step is added to choose the 

minimum widths for the coefficients which are stored in the 

memory to achieve the target approximation error. This is done 

by truncating the resulted coefficients to fixed widths, which 

come from the Maple program to reduce the memory 

requirement, while keeping the pre-specified approximation 

error. This step is based on iterating over all the possibilities for 

the coefficient widths, taking into account the error result due to 

rounding in each case. The minimum width which achieves the 

target approximation error that can be applied for each Non-

Uniform segment is chosen. To evaluate the function, the 

polynomial equation needs to be performed. Hybrid multiplier 

is used by applying the concept of Booth-Multiplier and Wallace 

Tree as shown in Section III. 

III. BOOTH-THREE PARTIAL PRODUCTS GENERATOR 

Parallel multipliers are usually used in graphics processing 

applications as they achieve high performance. Hence, they are 

used for the evaluation of the polynomial equation (1) of degree 

two, where 𝐶0, 𝐶1 and 𝐶2 are the polynomial coefficients which 

are stored in the LUT and generated by the Minimax 

mathematical algorithm. 
 

𝑓(𝑥) ≈ 𝐶0 +  𝐶1 𝑥 +  𝐶2 𝑥
2                                       (1) 

High-Speed multipliers consist of high-radix Booth partial 

products generator and carry-save tree to reduce the number of 

the resulting partial products to two partial products. A carry-

propagate, or carry-look ahead, adders are widely used to 

generate the final product [8]. A carry-look ahead adder is used 

because the carry bit "i" is computed without waiting for carry 

bit "i-1" (i=1,2,3,4, etc.) so solving the carry delay problem, 

Booth-3 can decode every four bits of the multiplier generating 

one partial product. This would reduce the number of the partial 

products by a factor of three or four, with a small area overhead 

of the Booth decoder. The number of the partial products which 

are generated for 10-bit (m0 to m9) signed multiplier are shown 

in Figure 4. For every four bits there is a code which is used to 

generate one partial product except for the first three bits which 

are added with ‘0’ bit to generate the first partial product, bit m9 

is repeated twice to complete the fourth bit for the last partial 

product pp3 without changing the multiplier value. Four partial 

products are generated (pp0, pp1, pp2, pp3). 

 
Figure 4 Multiplier Grouping for Booth-3 10-bit Signed Multiplier 
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A scalable, homogeneous, gate-level implementation of the 

Booth-3 decoder is used [8] to guarantee low-power operation 

and to achieve more regular layout and smaller area as shown in 

Figure 5. The four bits are provided to the Booth-3 decoder to 

generate the select iM signals. These signals are used to generate 

each bit of the partial product after being passed to a function 

with the multiplicand bits. 

After the partial products are being generated, each partial 

product is shifted logically by three bits, the 1st partial product 

is shifted zero bits, the 2nd partial product is shifted by 3 bits and 

the 3rd is shifted by 6 bits and so on. Sign extension for each 

partial product is used to obtain correct results. This way is not 

suitable for high performance because it increases the capacitive 

load on the sign bit, hence increasing area and power 

consumption, and finally, degrades performance. 
 

Instead, there are ready-made sign-templates to avoid the 

sign extension process. The one proposed in [8] works well for 

signed multiplication, but the conditions for generating the sign 

extension signal, called E, result in some area overhead. A 

summary of these conditions is given here: 

 Partial product is positive if S = 0. 

 Partial product is negative if S = 1. 

 E = 1 if the select bits select positive multiple and the 

multiplicand is positive. Or if the select bits select 

negative multiple and the multiplicand is negative. Or 

finally if the select bits are +0. 
 

 E = 0 if the select bits select positive multiple and the 

multiplicand is negative. Or if the select bits select 

negative multiple and the multiplicand is positive. Or 

finally if the select bits are -0. 

The Logic function which performs the sign extension signal 

for the E is shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Partial Product Generator Block diagram. 

 
Figure 6 Logic Circuit to Generate E for Booth-3 

The proposed method is about pre-extending the 

multiplicand by two additional bits to account for (3*M), and 

then execute the same sign-template as if it is unsigned 

multiplication as shown in Figure 7. The signal, C, is a copy of 

the sign bit of the multiplicand after extension. S is the sign bit 

of the select bits. This implementation increases the 

performance and decreases the overhead area because there is 

no need to use the logic for generating the E signal. The copy 

signal, C, does not need a logic circuit to be generated, yet 

ensuring right results. For the given example of 10-bit 

multiplication, the proposed method saves four times the 

overhead logic of generating the E signal. This improvement 

increases as the number of partial products increases. 

 

 

Figure 7 Proposed Sign Template for 10-bit Signed Multiplier 

Another significant improvement in the proposed algorithm 

is achieved by using a circuit to disable the power-hungry adder 

circuitry in the case of generating∓3 ∗ 𝑀  when it is not used, 

hence reducing the total power consumption as shown in Figure 

8. There is no need to use a carry-propagate adder to generate 

the hard multiple ( ∓3 ∗ 𝑀) = M + 2*M. given that it only 

operates when the select bits choose ∓3 ∗ 𝑀. As all the 

generated partial products need to be added together and the 

final outputs from each multiplier are to be calculated, the need 

of Multi-operand Adder is raised as discussed in section IV. 
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Figure 8 Proposed Circuit to Disable the Adder That Generates the 

Hard Multiple, 3M. 

IV. MULTI-OPERAND ADDER 

Wallace Tree with Carry Propagate Adder achieves Multi-

Operand Addition with small area and propagation delay. 

Wallace Tree is known for their optimal computation time when 

adding multiple operands to two outputs using Half Adders, Full 

Adders and 4:2 compressors. It is used to speed up the 

computation by reducing the number of the sequential addition 

stages. Using 4:2 compressor enhances the speed of the 

multiplier leading to smaller number of stages in performing the 

final result. The critical path delay using the compressor is 

compared with Full-adders and Half-adders. The performance 

of the Wallace Tree varies depending on the structure and how 

many blocks are used in each stage. It is used here to add the 

partial products in a tree-like fashion in order to produce two 

rows of partial products that can be added in the last stage. The 

tree structure and the stages to generate the final result for 

summing the partial products are shown in Figure 9 where the 

black dots represent the partial product bits. They are generated 

by 10*10 Booth-3 partial product multiplier where 2, 3 and 4 

bits are added with Half Adder, Full Adder and 4:2 compressors 

to achieve the final value in three stages. 

 

Figure 9 Wallace Tree Architecture for 10*10 Multiplier 

The proposed design is prototyped and tested for the 

function 1/ (1+x) using ASIC/FPGA flows. The results are 

shown in section V.     

V. SIMULATION RESULTS 

The function 1/ (1+x) is implemented on the input interval 

[0:1], with 2−13 ≈ 0.000061035 approximation error. The 

coefficients are truncated to have savings in LUT with widths of 

14, 18, 14 bits with maximum truncation error of 0.000061035. 

The approximation coefficients C0, C1, and C2 are truncated to 

14, 18, 14 bits, respectively as shown in Table 2. The number of 

the Non-Uniform segments and the size of each segment are 

shown in the table. The Non-Uniform segmentation for this 

function resulted in 7 entries in the LUT compared to 13 entries 

if  Uniform segmentation is used. 
 

Table 2 Maple Interpolation Coefficients for 1/ (1+x) 

 

As an example of how to evaluate the function for a specific 

input value to deal with fraction numbers, the input X value is 

shifted by 29 and the output value is shifted by 213 and that is to 

accomplish a result of error less than 2−13. As seen from these 

random input values in Table 3 for the function 1/ (1+x). The 

input value, the rounded input value after shifting back by 29, 

the output value Z from the SFU and the rounded final result 

after shifting back by 213 are shown in the table. 

 

Table 3 Random Test Input Values 

Input 
X 

Rounded  
X X/29 

Actual f(X) 
Output 

Z 
Rounded 
ZZ/213 

Error          
e 

0 0 1 8191 0.999877 1.23*10−4 

219 0.4277 0.700427 5736 0.700195 2.32*10−4 

68 0.1328 0.882758 7230 0.88256 1.98610−4 

28 0.0547 0.94813 7766 0.94799 1.410−4 

178 0.3476 0.7420 6077 0.74182 1.7810−4 

 

The design was implemented on Xilinx XC3S500E FPGA 

to verify the output. ChipScope Pro is used for that purpose, and 

the result of the implementation is shown in Table 4.   

Table 4 FPGA Implementation Results 
Logic utilization  Used  Available  Utilization  

Total No of 4 input LUT 1225 9312 13% 

After synthesis  

Max combinational path delay  18.514 ns  

2.717 ns logic 2.717 ns route  

After place and route  

Max combinational path delay  27.825 ns  

Segment 
width 

Start 
segment 

C0 C1 C2 

16 0 0.9999389648 -0.9927825928 0.8372802734 

16 16 0.9963989258 -0.935333252 0.5992431640 

16 32 0.9868774414 -0.8586997986 0.4434814453 

16 48 0.9722290039 -0.7798805237 0.3374023437 

16 64 0.9537353516 -0.7055931091 0.2626342773 

32 80 0.9228515625 -0.609462738 0.1877441406 

32 112 0.8764038086 -0.5019607544 0.1256103515 
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       North Carolina State University (NCSU) 45 nm technology 

PDK [9] is used for synthesis and layout. The layout report is 

generated using Cadence SoC-Encounter and resulted in 

maximum propagation delay of 5.251 ns as compared to 6.53 ns 

for the Uniform segmentation method [10] and 6.70 ns for the 

Hierarchical method [11] achieving a reduction of up to 19% of 

the total propagation delay. A total chip area of 0.014 mm2is 

also achieved. 

VI. CONCLUSIONS 

A new Special Function Unit for function evaluation is 

proposed. The SFU is based on the Non-Uniform segmentation 

and remapping algorithms. It was shown that the proposed 

technique achieves the minimum-size coefficient table in 

addition the amount of arithmetic units is improved due to the 

use of an enhanced Non-Uniform segmentation algorithm and 

Hybrid multiplier. The proposed design is faster than the 

previously developed methods. The function 1/ (1+x) is 

implemented to achieve the target accuracy of three digits after 

the decimal point. A new sign template for Booth multipliers is 

presented. The proposed technique improves the speed of these 

multipliers by reducing the number of partial products with no 

need to add specific hardware to develop the extended sign bit. 

The presented method is tested on Booth-3 multipliers. The 

Booth-3 multipliers reduces the partial products by three times 

the original ones. Also, a circuit for reducing the power 

consumption in the hard-multiple generation adder is proposed. 

A  Maple code is written to get the best coefficients widths for 

truncation and storage in the LUT to minimize the memory size 

used. CLAs are implemented as 4-bit modules and are used in a 

hierarchical structure to realize adders that have multiples of 4-

bits. A maximum propagation delay of 5.251 ns with a reduction 

of 19% as compared to other traditional methods is achieved. 

The total chip area is 0.014 mm2.  
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