البحث الرابع

بيانات البحث

4	رقم البحث في القائمة
Numerical investigation of turbulent entropy production rate in conical	العنوان باللغة الإنجليزية
tubes fitted with a twisted-tape insert	
دراسة عددية للمعدل المضطرب للإنتروبي المنتجة في الأنابيب المخروطية المزودة بشريط	العنوان باللغة العربية
ملتوي	
2	عدد الباحثين
1. Amr Kaood	أسماء المؤلفين بالترتيب
2. Olatomide G. Fadodun	
International Communications in Heat and Mass Transfer	اسم المجلة
0735-1933	ISSN
Elsevier Ltd.	الناشر
مجلة علمية عالمية متخصصة ومحكمة	التصنيف
https://doi.org/10.1016/j.icheatmasstransfer.2022.106520	صفحة البحث
139	رقم المجلد
-	رقم العدد
106520	ترقيم الصفحات
ديسمبر 2022	تاريخ النشر
У	مشتق من رسالة علمية؟
Amr Kaood: Conceptualization, Methodology, Software,	بيان بدور المشاركين*
Validation, Formal analysis, Investigation, Data curation,	
Visualization, Writing – review & editing.	*منصوص على أدوار
Olatomide G. Fadodun: Formal analysis, Investigation, Data	المشاركين في نسخة البحث
Curation, Visualization, Writing - Original Draft, Writing -	المنشورة
Review & Editing.	
كلية الهندسة، جامعة الفيوم، مصر.	مكان إجراء البحث
الدر اسة عددية ولم يتم إجراء أي تجارب معملية.	

Abstract

This paper investigates the turbulent entropy production rate of water flow in convergent and divergent pipes with and without twisted tape inserts for the first time. A carefully validated numerical model was adopted using Ansys-Fluent with $k-\epsilon$ model. The effect of Reynolds number $(3\times10^3 \le \text{Re} \le 4.5\times10^5)$, diameter ratio (1.0, 1.5, 2.0, 3.0, and 5.0), and the presence of twisted tape inserts on entropy production rate (EPR) were examined. The result shows that the twisted tape insert increases the viscous entropy production rate (VEPR) but reduces the thermal entropy production rate (TEPR). Also, the TEPR is higher in the divergent pipe than in the convergent pipe. However, the opposite is the case for the VEPR. Furthermore, increasing the diameter ratio increases the divergent pipe's TEPR while decreases it in the convergent pipe. The ratio of TEPR in divergent pipe of diameter ratio 3 to a similar one of diameter ratio 1.5 is 1.26. The corresponding value in converging pipes is 0.96. The combination between the conical tube configurations and TT significantly influences the entropy characteristics. Lastly, two new correlations based on response surface methodology were developed to estimate EPR in convergent and divergent pipes with twisted tape inserts. The results show that the Reynolds number, diameter ratio, and interaction between the two are statistically significant to EPR.

.