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Abstract 
The composite materials are well known by their excellent combination of high structural stiffness and low weight.  The main feature of 
these anisotropic materials is their ability to be tailored for specific applications by optimizing design parameters such as stacking 
sequence, ply orientation and performance targets. Finding free torsional vibrations characteristics of laminated composite beams is one 
of the bases for designing and modeling of industrial products. With these requirements, this work considers the free torsional vibrations 
for laminated composite beams of doubly symmetrical cross sections. The torsional vibrations of the laminated beams are analyzed 
analytically based on the classical lamination theory, and accounts for the coupling of flexural and torsional modes due to fiber 
orientation of the laminated beams are neglected. Also, the torsional vibrations of the laminated beams analyzed by shear deformation 
theory in which the shear deformation effects are considered. Numerical analysis has been carried out using finite element method 
(FEM). The finite element software package ANSYS 10.0 is used to perform the numerical analyses using an eight-node layered shell 
element to describe the torsional vibration of the laminated beams. Numerical results, obtained by the ANSYS 10.0, classical lamination 
theory, and shear deformation theory are presented to highlight the effects of fibers orientation and layers stacking sequence on torsional 
frequencies of the beams.  
 
Keywords: Composite materials, Laminated composite beams, Torsional vibrations, Shear deformation, Finite element 

analysis 
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1. INTRODUCTION 

The composite beam members have been increasingly used over 
the past few decades in the fields of aerospace, civil and 
mechanical engineering due to their excellent engineering 
features. A variety of structural components made of composite 
materials such as turbine blades, vehicle axles, aircraft wing, and 
helicopter blade can be approximated as laminated composite 
beams, which requires a deeper understanding of the vibration 
characteristics of the composite beams [1]. Ccomposite beams 
are generally used as structural components of light-weight 
heavy load bearing elements because of the high strength-to-
weight and stiffness-to-weight ratios, the ability of being 
different strengths in different directions and the nature of being 
tailored to satisfy the design requirements of strength and 
stiffness in practical designs. The increased use of laminated 
composite beams requires a better understanding of vibration 
characteristics of these beams; it is quite essential in the design 
of composite beams subjected to dynamic loads. Due to the 

composite beams widely used in a variety of structures as well as 
their substantial benefits and great promise for future 
application, the dynamic behaviors of the laminated composite 
beams have received widespread attention and have been 
investigated extensively by many researchers. A number of 
researchers have been developed numerous solution methods to 
analysis the dynamic behaviors of the laminated composite 
beams [2], [3], and [4]. [5] addressed a free vibration analysis of 
functionally graded beams via hierarchical models, which were 
derived via a unified formulation. Giunta et al. [6] presented a 
unified formulation for the free vibration and elastic stability 
analysis of three-dimensional sandwich beams, in which shear 
deformation, in- and out-of-plane warping and rotary inertia 
were accounted for. Giunta et al. [7] investigated the free 
vibration of simply supported, cross-ply beams via several 
higher-order displacement- based theories accounting for non-
classical effects. 
 



IJRET: International Journal of Research in Engineering and Technology     eISSN: 2319-1163 | pISSN: 2321-7308 

 

__________________________________________________________________________________________ 

Volume: 02 Issue: 12 | Dec-2013, Available @ http://www.ijret.org                                                                        210 

Vidal and Polit [8,9] developed a three-noded beam element on 
the basis of a sinus distribution with layer refinement for the 
dynamic analysis of laminated beams. Vidal and Polit [10] 
performed the vibration analysis of laminated beams by use of 
the Murakami’s zig-zag function in the sine model. Vo and Thai 
[11,12] investigated the free vibration of axially loaded 
composite beams with arbitrary lay-ups using the parabolical 
shear   dreformation theory. Based on the sinusoidal shear  
dreformation theory, Vo et al. [13] developed a finite element 
model to study the vibration and buckling of composite beams 
with arbitrary lay-ups.  
 
In designing structures, it is critical to know the natural 
frequencies of the structure. If a natural frequency of the 
structure is close to an excitation frequency, then severe 
vibration of the structure could occur. This condition is called 
resonance and to avoid resonance, the natural frequencies of the 
structure must be altered by making suitable adjustments in the 
design. The study of such free vibrations (free because the 
structure vibrates with no external forces) is very important in 
finding the dynamic response of the elastic structure. Thus, in 
the dynamic analyses, it is quite essential to consider an 
overview of the free vibration characteristics, including the 
natural frequencies of these composite structures.  [14] 
performed the free vibration analyses of generally laminated 
composite beams using the method of Lagrange multipliers. Jang 
and Lee [15] presented a spectral element model for the axial-
bending-shear coupled vibrations of axially loaded laminated 
Timoshenko beams. 
 
Free vibration analysis of laminated beams has been conducted 
by significant amount of research.  Yõldõrõm and Kõral [16] 
studied the out-of-plane free vibration problem of symmetric 
cross-ply laminated beams using the transfer matrix method. 
Also, the effects of the rotary inertia and shear deformation are 
investigated under various boundary conditions. Banerjee, J. [17] 
investigated the free vibrations of axially loaded composite 
Timoshenko beams using the dynamic stiffness matrix method 
by developing an exact dynamic stiffness matrix of composite 
beams taking into account the effects of an axial force, shear 
deformation, and rotatory inertia. The theory includes the 
material coupling between the bending and torsional modes of 
deformations. Jun et al. [18] investigated the free vibration and 
buckling behaviors of axially loaded laminated composite beams 
having arbitrary lay-up using the dynamic stiffness method 
taking into account the influences of axial forces, Poisson effect, 
axial deformation, shear deformation, and rotary inertia. They 
developed the exact dynamic stiffness matrix by directly solving 
the governing differential equations of an axially loaded 
laminated beam.  Eisenberger, M. et al. [19] used the dynamic 
stiffness analysis and the first-order shear deformation theory to 
study the free vibration of laminated beams. Calım, F. [20] make 
study intended to analyze free and forced vibrations of non-
uniform composite beams in the Laplace domain. Khdeir and 
Reddy [2] have been studied free vibrations of cross-ply 
laminated beams with arbitrary boundary conditions. 

Krishnaswamy, S. et al. [3] gave analytical solutions for the free 
vibration problem of laminated composite beams. Song and 
Waas [22] have been studied both buckling and free vibration 
analyses of laminated composite beams. They Song and Waas 
[22] also investigated the shear deformation effects. Yildirim, V. 
[23] used the stiffness method for the solution of the purely in-
plane free vibration problem of symmetric cross-ply laminated 
beams with the rotary inertia, axial and transverse shear 
deformation effects included by the first-order shear deformation 
theory.  Chandrashekhara and Bangera [24] investigated the free 
vibration of angle-ply composite beams by a higher-order shear 
deformation theory using the shear flexible FEM. Teh and 
Huang [25] presented two finite element models based on a first-
order theory for the free vibration analysis of fixed-free beams of 
general orthotropic. Carrera et al. [26] presented hierarchical 
beam elements on the basis of a unified formulation, where the 
displacement components  were expanded in terms of the section 
coordinates. On the basis of a unified formulation, Biscani et al. 
[27] formulated variable kinematics beam elements, which were 
combined through the Arlequin method. Giunta et al.  
 
Several researchers have carried out studies on experimental and 
theoretical evaluations of flexural- torsional vibration analysis 
for FRP structural members. Lee and Kim [28] studied free 
vibration of a thin-walled laminated composite beam, where a 
general analytical model applicable to the dynamic behavior of a 
thin-walled channel section composite is developed. This model 
is based on the classical lamination theory, and accounts for the 
coupling of flexural and torsional modes for arbitrary laminate 
stacking sequence. Shadmehri, F. et al. [29] studied the flexural–
torsional behavior of thin-walled composite beams with closed 
cross-section and a number of non-classical effects, such as 
material anisotropy, transverse shear, are considered in the 
study. Kollar, LP. [30] investigated the analysis of Flexural-
torsional vibration of open section composite beam with 
including shear deformation. Qiao et al. [31] presented a 
combined analytical and experimental approach to characterize 
the vibration behavior of pultruded Fiber-Reinforced Plastic 
(FRP) composite cantilever I-beams. 
 
In engineering practice, we often come across the analysis of 
structures subjected to vibratory twisting loading, such as 
aerodynamic or asymmetric traffic forces. Also, composite 
structural elements consisting of a relatively weak matrix 
reinforced by stronger inclusions or of different materials in 
contact are of increasing technological importance in 
engineering. Steel beams or columns totally encased in concrete 
are most common examples, while construction using steel 
beams as stiffeners of concrete plates is a quick, familiar and 
economical method for long bridge decks or for long span slabs.  
 
The extensive use of the aforementioned structural elements 
necessitates a rigorous dynamic analysis. Several researchers 
have dealt with torsional vibration of beams.  Eisenbeger, M. [32] 
studied the torsional vibration of open and variable cross section 
bars by derive analytical method is to form the dynamic stiffness 
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matrix of the bar, including the effect of warping. Kameswara 
and Mirza [33]studied the problem of free torsional vibration 
and buckling of doubly symmetric thin-walled beams of open 
section, subjected to an axial compressive static load and resting 
on continuous elastic foundation. Evangelos and Sapountzakis 
[34] studied the Torsional vibrations of composite bars by 
(BEM) boundary element method which is developed for the 
non-uniform torsional vibration problem of doubly symmetric 
composite bars of arbitrary constant cross-section. 
 
In the present study, the torsional vibration behavior of 
symmetrical laminated composite beams are studied. The 
laminated beam is modeled and analyzed by the FEM. The 
commercial finite element program ANSYS 10.0 is used to 
perform a dynamic modelling to the laminated beams by 
performing an eigenvalue analysis. Mindlin eight-node 
isoparametric layered shell elements (SHELL 99) are employed 
in the modeling for describing the torsional vibrations of these 
beams. Also, analytical models are developed by classical 
lamination theory and shear deformation theory to study the 
torsional vibrations of the beams. In the analytical models, the 
flexural-torsional coupling effects are ignored and pure torsional 
vibrations are taken. The effects of fiber direction and laminate 
stacking sequence on the frequencies of torsional vibrations were 
investigated. Also, the effects of boundary conditions on the 
torsional frequencies of the laminated beams are demonstrated. 
 
2. MATERIAL AND GEOMETRY  

A generally laminated composite beam with a solid rectangular 
cross-section of doubly symmetrical cross sections, as shown in 
Figure 1, is considered to be studied. The laminated beam is 
made of many plies of orthotropic materials, and the principal 
material axes of a ply may be oriented at an arbitrary angle with 
respect to the x-axis. In the right-handed Cartesian coordinate 
system, the x-axis is coincident with the beam axis and its origin 
is on the mid-plane of the beam. The length, breadth and 
thickness of the beam are represented by L, b and h, 
respectively. 
 
Glass fiber (E-Glass) is used as reinforcement in the form of 
unidirectional fibers with epoxy resin as matrix for the laminated 
composite beams. The mechanical properties for fiber and 
matrix are presented in Table 1 [35]. For all finite element and 
analytical models, their associate material elastic properties were 
calculated analytically using the simple rule-of-mixtures as 
given in [36]. More accurate values can be further obtained with 
some mechanical testing. 
 
The constituent laminate were considered to be linear elastic and 
generally orthotropic therefore the concept of engineering 
constants was used to describe the laminae elastically. A certain 
set of elastic properties is required as input parameters for the 
finite element code and for the analytical models. The set of 
properties required as an input parameter at a material level were 

E1, E2, E3, G12, G13, G23, v12, v13 and v23  as shown in Table 1; 
Where 1, 2, and 3 are principal material directions. 
 

Table 1 Material elastic properties 
 

Material Properties Value 

Glass fiber Fiber longitudinal modulus in ℓ 
direction Efℓ (GPa) 

74 

Fiber transverse modulus in t 
direction Eft (GPa) 

74 

Fiber shear modulus Gfℓt (Gpa) 30 
Density ρf (kg/m3) 2600 

Fiber Poisson ratio νfℓt 0.25 
Epoxy 
resin 

Elastic modulus E (Gpa) 4.5 
Shear modulus G (Gpa) 1.6 

Density ρm (kg/m3) 1200 
Poisson ratio ν 0.4 

orthotropic 
Laminae 

 

Lamina longitudinal modulus E1 
(GPa) 

46.2 

Lamina transverse modulus E2 
(GPa) 

14.70 

Lamina transverse modulus E3 
(GPa) 

14.70 

Density of composite ρc (kg/m3) 2040 
Lamina shear modulus in plane 

1–2 G12 (GPa) 
5.35 

Lamina shear modulus in plane 
1–3 G13 (GPa) 

5.35 

Lamina shear modulus in plane 
2–3 G23 (GPa) 

5.22 

Major Poisson ratio in plane  
1–2 υ12 

0.31 

Major Poisson ratio in plane  
1–3 υ13  

0.31 

 Major Poisson ratio in plane  
2–3 υ23 

0.41 

 Fiber volume fraction vf 60% 
 
3. MODAL ANALYSIS BY FINITE-ELEMENT 

METHOD, ANSYS 

The beams were discretized using (type shell99) finite element 
as shown in  Figure 2, available in the commercial package 
ANSYS10.0. This element has 8 nodes and is constituted by 
layers that are designated by numbers (LN - Layer Number), 
increasing from the bottom to the top of the laminate; the last 
number quantifies the existent total number of layers in the 
laminate (NL - Total Number of Layers).The element has six 
degrees of freedom at each node: translations in the nodal x, y, 
and z directions and rotations about the nodal x, y, and z-axes. 
The choice of shell99 element type is based on layered 
applications of a structural shell model, and the type of results 
that need to be calculated. 
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xIJ = Element x-axis if ESYS is not supplied. 
 

x = Element x-axis if ESYS is supplied. 
 
A modal analysis will be carried out using ANSYS 10.0 finite 
element software to study the frequencies of free torsional 
vibrations of the mentioned composite laminated beam. 
 
4. DYNAMIC MODELING BY ANALYTICAL 

METHODS  

In the present paper, the free torsional vibrations of symmetric 
laminated beams are studied by the classical lamination theory 
and shear deformation theory. 
 
When the cross-section has one plane of symmetry, one of the 
circular frequencies belongs to a flexural mode and the other two 
circular frequencies to flexural-torsional modes; while when the 
cross-section has two planes of symmetry, the three circular 
frequencies belong respectively to the flexural modes in the two 
planes of symmetry and to the pure torsion mode (when the axis 
of the beam does not bend). The bending–torsion coupling due 
to stiffness coupling presented in composite beams due to fiber 
orientation and stacking sequence is neglected.  
 
4.1. Classical Beam Theory 
The oldest and the well-known beam theory is the Euler–
Bernoulli beam theory (or classical beam theory—CBT), in 
which the shear deformation not included. Although this theory 
is useful for slender beams, it does not give accurate solutions 
for thick beams. The beams to be studied are orthotropic and its 
cross section has two axes of symmetry y and z. The mass is also 
symmetrical with respect to these axes, and, accordingly, the 
center of mass coincides with the origin of the y-z coordinate 
system, so that the flexural-torsional coupling not occurs.  
 
A beam with two cross-sectional planes of symmetry may 
undergo flexural vibration in either of the two planes of 
symmetry and torsional vibration [37]. Pure torsional vibrations 
are focused in this study.  
 
Expressions for the torsional vibration ωBψi of long 

( tGI >>
2/ LEI ω
) and short ( tGI <<

2/ LEI ω
) orthotropic beams 

are: 
 
Torsional vibration of long beam is given by:  
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Torsional vibration of short beam is given by: 
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Where tGI is the torsional stiffness of the beam; in N.m2, 

ωEI is the warping stiffness of the beam; in N.m4, θ is the polar 
moment of mass per unit length about the shear center, ρcomp is 
mass per unit volume, A is the area of the cross section, and  
µ4Bi and µ4Gi are parameters in the calculation of natural 
frequencies, which are given in Table 2. 
 

 
 

Fig 2 Shell99 geometry 
 
The torsional frequencies of a beam of arbitrary length can be 
approximated by: 
 

long
B
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B
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By using the previous two equations of torsional vibration, the 
torsional frequencies will be: 
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For symmetric orthotropic laminated beam previously 

mentioned; the torsional stiffness of the beam tGI can be 
obtained by this relation, 
 

tGI = 66

4
d

b

 in (N.m2) (6) 
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and Warping stiffness of the beam ωEI can be obtained by this 
relation,  
 

ωEI = 144

2

11

3 h

a

b

in (N.m4) (7) 
 
Where:  
a11: element 1–1 of the laminate extensional compliance matrix 
(m/N) 
d66: element 6–6 of the laminate bending compliance matrix 
(1/N .m) 
 
Table 2 The constants μBi and μGi for for different types of end 

supports 
 

Geometry μB μG 

Clamped-Free μB1 = 1.875 
μB2 = 4.694 
μBi ≈ (i-0.5) 

μGi ≈ (i-0.5)π 

Clamped-Clamped μB1 = 4.730 
μB2 = 7.853 
μBi ≈ (i+0.5)π 

μGi = iπ 

Clamped-Simply 
supported 

μB1 = 3.927 
μB2 = 7.069 
μBi ≈ (i+0.25)π 

μGi = iπ 

Simply supported-
Simply supported 

μBi = iπ μGi = iπ 

 
4.2. Shear Deformation Theory 

The theory, based on the assumption that cross sections remain 
plane but not perpendicular to the axis is frequently called first-
order shear theory. A beam, in which shear deformation is taken 
into account, is called a Timoshenko beam. In shear deformation 
theory the effect of the shear deformation is considered in 
torsional frequencies calculation as given by [17].  
 
Torsional vibration with shear deformation ωψi of short 

(
2

tGI L << ωEI ) and long (
2

tGI L >> ωEI and
2LS ωω >> ωEI ) 

orthotropic beams are:  
 
Torsional vibration of short beam is given by, 

124

2)(

−





















+








=

SiBi

i

L

S

L

EI µ
θ

µ
θω

ωωω
ψ

 (8) 
 

Torsional vibration of long beam is given by,  
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The torsional circular frequency of a beam of arbitrary length 
can be approximated by: 
 

longishortii
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By using Eqs. (8) and (9) then, 
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Where the torsional shear stiffness is given by,  
 

66

2

2.1 a

bh
S =ωω

 (12) 
 
Where a66 is element 6–6 of the laminate extensional 
compliance matrix (m/N) 
 
5.NUMERICAL RESULTS AND DISCUSSION 

5.1. Influence of Fiber Angle on Torsional Natural 

Frequencies 

The influences of fiber orientation are investigated by modeling 
laminated beams of different lay-up construction of clamped – 
free boundary condition as shown in Figure 1. The analysis was 
performed to 8-layered symmetrically laminated beam with 
length 400 mm, width 40 mm and thickness 3.2 mm and the 
lamination scheme of beams is ranging from θ= 00 to 900, in 
increments of 50.  
 
The results obtained after modeling the beams are presented in 
Figure 3. It presents the variation of the lowest three torsional 
natural frequencies of the beam with respect to fiber angle. From 
the results, It is seen that the torsional frequencies increase with 
increasing the fiber angle of the laminated beams until reach to 
significant values in the range from about θ=350 to θ=450, then 
the torsional frequencies decrease gradually with increasing the 
fiber angle until reach to minimum value at θ=900. 
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Fig 3. Variation of 1st, 2nd, and 3rd torsional frequencies of Clamped–Free composite beam with respect to fiber angle change 
 

 
5.2. Influence Of Laminate Arrangement On Torsional 

Frequencies 

To investigate the influence of laminate stacking sequence, 
dynamic modeling is performed to 3 set of symmetrical 
laminates with a total of 8 layers and dimension of 400 mm 
length, 40 mm width and total thickness 3.2 mm. Each layer in 
the laminate has the same thickness. The lamination schemes of 
the beams are as follow: (0/90)2S, (45/-45)2S, and (45/ 
45/0/90)S. The torsional frequencies are obtained by the 
analytical methods and by FE package, Table 3. From the table it 
is noticed that very good agreement between results obtained by 
FEM, classical beam theory and shear deformation theory. 
National frequency for laminates with fiber orientation (+45/-45) 
is permanent higher than for orientation with ( 0/90). 
 
Figure 4, give the variation of the torsional natural frequencies 
of the laminates with respect to mode number for clamped free 
end condition, from the results it is already possible to verify the 
influence of the stacking sequence of the laminate on torsional 
vibration: the laminate with fibers at +/-450 has a larger 
torsional natural frequencies than the laminate of +/-45/0/900 
and of 0/900 fibers. This was expected, since the natural 
frequencies are related to the stiffness of the structure and the 
(+/-450) is much stiffer on torsion than the +/-45/0/900 and than 
0/900 laminate. 
 
The laminate of 0/900 fibers have the lowest torsional natural 
frequencies than the other lamination schemes and thus,  because 
50% of the fibers are oriented at 00 direction for 0/900 laminate, 
and thus appropriate for bending (Flexural Modes). This can be 
explained by the fact that the fibers oriented at 00 are more 
appropriate to flexural loads and the fibers oriented at 450 are 
more appropriate to torsional loads, i.e. when designer have 

flexural load it is better to use 0/90 laminates and when  applied 
loads are torsional, laminates with orientation at 450 is more 
appropriate. 
 
The mode shapes associated with the torsional natural 
frequencies of (0/90)2S laminated beam are illustrated in Figure 
5. They are deduced by FEM ANSYS for the first six torsional 
frequencies. 
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Fig 4. Influence of laminate stacking sequence on torsional 
natural frequencies for clamped free boundary condition 
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Table 3 Torsional natural frequencies (Hz) for different stacking sequences laminate 
 
Lamination schemes Theory Modes 

  1 2 3 4 5 6 

(0/90)2S FEM ANSYS 164.24 499.13 852.68 1236.00 1657.00 2125.00 

 Classical Beam Theory 161.90 490.40 836.00 1208.40 1616.30 2067.40 

 Shear deformation Theory 161.80 490.30 835.20 1204.00 1602.70 2033.00 

        

(45/-45)2S FEM ANSYS 246.40 741.30 1242.00 1754.00 2280.00 2824.00 

 Classical Beam Theory 250.30 752.70 1261.20 1779.40 2311.00 2860.00 

 Timoshenko 250.30 752.70 1261.10 1779.00 2310.00 2856.80 

        

(45/-45/0/90)s FEM ANSYS 239.00 720.00 1208.00 1709.00 2227.00 2767.00 

 Classical Beam Theory 242.50 730.10 1227.00 1738.70 2270.90 2828.70 

 Shear deformation Theory 242.50 730.00 1226.80 1737.60 2267.00 2819.00 
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Fig 5. The torsional vibration modes of (0/900) clamped-free laminated beam 
 
  

 
5.3. Effect Of Boundary Conditions On Torsional 

Frequencies 

The FE analyses by using ANSYS are used to investigate the 
influences of boundary conditions on torsional frequencies of the 
laminated beams. The analysis can be applied to the laminated 

beam previously mentioned with the same dimensions and 
geometry. The boundary conditions to be investigated in this 
study are as follow: C-F Clamped–Free, C-C Clamped–
Clamped, C-S Clamped–Simply-Supported, and S-S Simply 
Supported - Simply Supported. 
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Fig 6. Influence of boundary conditions on 1st torsional natural frequency frequency 
 

 
The influence of boundary conditions on torsional natural 
frequencies is investigated for the 1st torsional frequency as 
shown in Figure 6. From the results, It is seen that the 
clamped-clamped condition has a larger torsional frequency 
than other boundary fixations, and thus for all fiber angles.  
The torsional frequency for clamped-simply supported 
condition comes to be lower than clamped-clamped condition, 
then simply supported-simply supported comes to be lower 

than clamped-simply supported, and finally clamped-free 
condition comes to be lower than other supports.  
 
CONCLUSIONS 

In the present study, the torsional vibrations behaviors of 
symmetrical laminated composite beams are studied. 
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The laminated beams is modeled and analyzed by the FEM. 
The commercial finite element program ANSYS 10.0 is used 
to perform a dynamic modeling to the laminated beams by 
performing an eigenvalue analysis, Aanalytical models are 
conducted by classical lamination theory and shear 
deformation theory to study the torsional vibrations of the 
beams. The following conclusions could be cited: 
1) Through the results, it is demonstrated that results by FEM 
ANSYS have shown to be in a good agreement with the 
analytical solutions, the results by classical lamination theory 
and shear deformation theory. 
2) From the results, it is clear that changes in fiber angle as 
well as laminate stacking sequences yield to different dynamic 
behavior of the component, that is, different torsional natural 
frequencies for the same geometry, mass and boundary 
conditions.  
3) It is seen that the torsional frequencies increase with 
increasing the fiber angle of the laminated beams until reach 
to significant value at about θ=450, then the torsional 
frequencies decrease gradually with increasing the fiber angle 
until reach to minimum value at θ=900.  
4) This result is very attractive since it makes abilitye to obtain 
the desired torsional natural frequencies without increasing 
mass or changing geometry. In practical applications, it means 
that if a torsional natural frequency excites the structure, the 
designer can change the material properties by changing the 
laminate stacking sequence, instead of re-design the complete 
structure.  
5) The finite element software package ANSYS is an efficient 
vibration prediction tool, because of its ability to model the 
laminated composite beam and reveal fundamental modal 
frequencies and modal shapes.  
6) Finally this study is useful for the designer in order to select 
the fiber orientation angle to shift the torsional natural 
frequencies as desired or to control the vibration level. 
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