Thn el g Susdall NS f gudll dasl>

Fayoum University
(2) oy mml atele

&0l dalb e JI ylgas

SOOM: Sort-Based Optimizer for Big Data Multi-Query

pa B2

[5 Lyws!
RadhyaSahal, Mohammed H. Khafagy and Fatma A. Omara

:4.59,[3 q M‘ L’)lsﬁ

Big Data ,Volume 8, Number 1, 2020

P Lol dall e Ul akxls

Mostly, sorting of data is a common operation in many applications, which causes the
consumption of resourcesand thus leads to computation overheads. Regarding the context of Big
Data multi-query, the shared sort operationsare fairly large, which incur high-cost I/Os whether
explicit or implicit. In particular, Big Data multi-query,including aggregation and sort
operations, takes long execution time due to reshuffle of the samedata multiple times using
similar tasks. Therefore, exploiting the sharing data and the sharing sort opportunitiesof similar
tasks can offer the possibility of reusing the previous results to optimize multi-query. For
consideringsharing data, our previous work, Multi-Query Optimization Using Tuple Size and
Histogram (MOTH) system, hasbeen introduced to consider the granularity of the sharing data
opportunities among multi-query. However, timeoverheads regarding redundant data in-network
movement (i.e., shuffling time to transfer intermediate data forsort operations) have not been
considered. Therefore, the MOTH system has been extended to SOOM (Sort-Based Optimizer
over MOTH) system to exploit sharing sort opportunities, including explicit sorts of sort
queriesand implicit sorts of aggregation queries. The proposed SOOM system consists of two
additional modules toexploit sharing sort opportunities, namely query explorer and sort exploiter,

which leverage our existingMOTH system to fulfill optimizing multiple aggregation and sort

queries. The experimental evaluation hasshown that the SOOM system outperforms the naive
and the state-of-art techniques regarding query execution
time among queries by 45% and 30%, respectively, while introducing maximal intermediate data

size reductionby 67% and 61% in average, respectively, over Hadoop-like infrastructures

lﬁlslju)w e S e .1

oka)] el)l Y lona (e e

