البحث الاول

Summary of publication No. (1)
Title: New genetic insights into improving barley cope with salt stress via regulating mineral accumulation, cellular ion homeostasis, and membrane trafficking

أسم المجلة: Environmental and Experimental Botany
Web of Science (Q1) Plant Science - Impact Factor (०.ソ) معامل التأثئثر رقم المجلد والعدد: 105252 ,208

7 February تاريخ النشر: 2023

Samar G. Thabet*, and
Ahmad M. Alqudah*

Abstract

Plant biologists aim for the genetic improvement of barley adaptation to salinity stress. This study was designed to explore the natural variation of responsive physiological and agronomic traits in a diverse spring barley panel under saltaffected soil and the application of selenium nanoparticles (Se-NP) during the vegetative phase. Significant phenotypic variation was detected among the accessions in response to salt stress. Application of $1 \mathrm{mM} \mathrm{Se-NP}$ enhanced thousand-kernel weight (TKW) by 28% while decreasing the Na^{+}contents in the flag leaves by 53%. The genomic analysis lead to having in total, of 146 associated SNPs with salt-responsive traits using 19 K SNPs in a genome-wide association study analysis. High significant SNPs were located within or near candidate genes which are potentially involved in the stress tolerance mechanism via enhancing the expression of $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporters and tonoplast H^{+}-ATPase. The candidate genes include HORVU.MOREX.r3.2HG0184880 and HORVU. MOREX.r3.2HG0199370 that encodes sulfite reductase and

anthocyanidin reductase, respectively, confirming the crucial role of Se-NP in improving barley salt tolerance. We further showed the allelic variation inside

the genes associated with traits under Se-NP leads to enhancing the accumulation of $\mathrm{N}, \mathrm{P}, \mathrm{K}^{+}$, ion homeostasis, antioxidant metabolism, nitrogen uptake, and ultimately grain yield. This study provides desirable alleles for salt tolerance in barley breeding strategies.

Keywords: Barley, GWAS, Ion homeostasis, LD, Selenium, Soil salinity.

