Preparation, dielectric and optical properties of Cr₂O₃ /PVC Nanocomposite films

Journal of Advances in Physics, volume 4, 2014, pp. 571-584.

A. Hassen, S. El-Sayed, W.M. Morsi, A.M. El Sayed

Abstract: Chromium oxide (Cr₂O₃) nanoparticles were synthesized using a sol-gel method and mixed with polyvinyl chloride (PVC). Rietveld refinement of X-ray powder diffraction (XRD) patterns of the samples revealed that the crystal structure of Cr₂O₃ is rhombohedral with space symmetry group . Scanning electron microscopy images showed that the Cr₂O₃ nanoparticles are well dispersed on the surface of the PVC films. The dielectric permittivity (ε '), and ac conductivity (σ_{ac}) of pure PVC increased with adding Cr₂O₃ due to the formation of conductive three-dimensional networks throughout the nanocomposite films and interfacial polarizations. The optical energy band gap (E_g) of the films decreases with increasing Cr₂O₃ content. The refractive index dispersion of the nanocomposite films obeys the single oscillator model. The dispersion parameters are changed by incorporation of Cr₂O₃. The optical properties of PVC are influenced by addition of Cr₂O₃ nanoparticles.

Keywords : Cr_2O_3 nanoparticles; polymer nanocomposites; dielectric properties; refractive index; optical dispersion.