Influence of Laser Irradiation on the Optical and the Mechanical Properties of Makrofol-DE Polycarbonate

Journal of Applied Polymer Science, volume 124, 2012, pp. 4620- 4627.

T. A. Hanafy,¹ S. A. Nouh,² M. N. Yasein,¹ A. M. El Sayed¹

¹Physics Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt

²Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt

ABSTRACT: The effect of IR laser irradiation on the optical and the mechanical properties of Makrofol-DE 1-1 CC polycarbonate films were investigated. Three hundred microns-thick films of Makrofol-DE 1-1 CC polycarbonate were irradiated with 0.00–10.40 J/cm² of Ga-As laser pulses, 904 nm, 5 W, and 200-ns pulse duration. Fourier transform infrared spectroscopy measurements showed that (C=O) groups degrade under laser irradiation at the studied fluence range. The aliphatic and aromatic (CAH) groups exhibited the same behavior, which can be attributed to nature of laser interaction with matter. The Makrofol samples exhibited degradation under the effect of laser irradiation up to 0.94 J/cm², where crosslinking mechanism started and continued until 7.07 J/cm². The refractive index had a minimum value at 0.94 J/cm² and maximum value at 7.07 J/cm² due to the degradation and crosslinking formation inside the sample, respectively. The decrease in elastic modulus, E, of Makrofol irradiated with 0.47–0.94 and 7.07–10.40 J/cm² indicates that the sample becomes more flexible, which results from the decrease in interatomic force constants.

Key words: mechanical properties; FT-IR; refractive index; polycarbonates