Influence of the spin deposition parameters and La/Sn double doping on the structural, optical, and photoelectrocatalytic properties of CoCo₂O₄ photoelectrodes

Solar Energy Mater. Sol. C. 217 (2020) 110705. https://doi.org/10.1016/j.solmat.2020.110705
Mohamed Shaban^{1,2}, Adel M. El Sayed³

¹Beni-Suef University, Faculty of Science, Department of Physics, Nanophotonics and Applications (NPA) Lab, Beni-Suef, Egypt.

Abstract

In this report, dual bandgap CoCo₂O₄ nanostructured films were spin-coated at different preheat temperatures (PHT) using different solution molarities (SM), Sn doping and La/Sn double doping levels. In addition to chemical compositions, various methods were used to investigate the structural, morphological, roughness, and optical properties. All the films are polycrystalline CoCo₂O₄, for simplicity Co₃O₄, spinel (AB₂O₄) cubic phase. The doping levels of Sn and La/Sn have strongly affected the surface morphologies and roughness parameters. PHT, SM, Sn% and La% show significant changes in lattice parameters, crystallite sizes, transmittance and reflectance spectra. Two bandgaps were detected in the range of 1.3-1.45 eV and 1.72-2.08 eV. With increasing PHT and decreasing SM, the refractive indices decreased and substantially modified with the inclusion of Sn and La in the matrix Co₃O₄. Among the applied electrodes for photoelectrochemical (PEC) hydrogen generation, the La/Sn-doped Co₃O₄ photocatalyst displays a catalytic H₂ output rate of 134.50 mmol h⁻¹/cm² @-1Vwith IPCE% of ~52% @ 460 nm. The supreme values of ABPE% are 3.21%@-0.24V and 3.75%@-0.57V, which are the highest values yet for Co₃O₄-based photocatalysts. Interestingly, this photoelectrode shows photogenerated current densities of $\sim -1.57 \, \text{mA/cm}^2$ at 0 V and -48.42 mA/cm² at -1V, and photocurrent onset over -0.361 V. The PEC surface areas and Tafel slopes are also studied for the identification of the mechanism of PEC H₂ production. The La/Sn doped-Co₃O₄ photoelectrode has been further tested for stability and reusability. This work has provided a new viewpoint to design highly active Co₃O₄based photocatalysts for solar light-driven H₂ generation.

Keywords: Spinal Co₃O₄ films; Sn/La-doping; Dual bandgap; Hydrogen production; Photoelectrocatalytic activity; Conversion efficiencies.

³Department of Physics, Faculty of Science, Fayoum University, Fayoum 63514, Egypt.