Influence of NiO and La₂O₃ nanoparticles on the optical, mechanical and electrical properties of PVAc–PMMA blend: a comparative study

Phys. Scr. 97 (2022) 055814 https://doi.org/10.1088/1402-4896/ac64d1

Adel M. El Sayed¹, S. El-Gamal^{2,3}

¹ Physics Department, Faculty of Science, Fayoum University, El Fayoum, 63514, Egypt

² Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo, 11757, Egypt

³ Physics Department, Faculty of Science, Northern Border University, Arar 91431, Saudi Arabia

Abstract

Nano-sized metal oxides are fascinating materials as fillers used for improving the polymeric materials' performance and expanding their multifunctionality. Two metal oxides; NiO and La₂O₃ nanoparticles (NP) were prepared and introduced into poly(vinyl acetate)/poly(methyl methacrylate), PVAc/PMMA blend via solution casting route. XRD and HR-TEM analysis confirmed the preparation of a cubic NiO and a hexagonal La₂O₃ NP with an average crystallite size of 59.85 and 29.13 nm, respectively. Introducing NiO and La₂O₃ increases the films' amorphous structure. FTIR analysis confirmed the existence of all blend' functional groups and hydrogen bond formation. SEM investigation showed that NiO or La2O3 loading affects the blend surface morphology. A UV-vis-NIR study showed that NiO narrowed the direct bandgap of the blend from 4.1 to 3.3 eV, whereas La₂O₃ reduced it to 3.4 eV. 1.0 wt.% NiO significantly improved the various optical constants of the blend. DMA revealed that storage modulus G' increased with loading of 1 wt.% NiO or La₂O₃ by 79.3% and 51.0%, respectively while G' decreased with heating. The dielectric behavior of films is analyzed using several dielectric parameters. The maximum σ_{ac} reported for 1.0 wt.% NiO/blend film is 5.8×10⁻⁶ (S/cm). The AC conduction mechanism is discussed for all films in the temperature and frequency ranges (298-373 K) and (5 Hz-2 MHz). 1.0 wt.%/PVAc/PMMA nanocomposite showed enhanced optical and mechanical properties, making it suitable for architectural, flexible display screens, and photovoltaic cell devices. Moreover, loading NiO and La₂O₃ improved the dielectric properties of the blend to be used in the semiconductor industry, besides energy storage devices and supercapacitors.

Keywords: PVAc/PMMA; NiO and La2O3 doping; Optical constants; Dynamic

mechanical analysis; Dielectric properties.