Crystal Structures

Crystal $=$ Lattice + Basis

Crystal = Lattice + Motif

Motif or basis: an atom or a group of atoms associated with each lattice point

14 BRAVAIS LATTICES + 7 CRYSTAL SYSTEMS

\Rightarrow Only 7 different shapes of unit cell can be stacked together to completely fill all space without overlapping.

- This gives 7 crystal systems, into which all crystal structures can be classified. These systems \& subsystems are:

1. Cubic System (SC, BCC, FCC)
2. Hexagonal System (S)
3. Triclinic System (S)
4. Monoclinic System (S, Base-C)
5. Orthorhombic System (S, Base-C, BC, FC)
6. Tetragonal System (S, BC)
7. Trigonal (Rhombohedral) System (S)

Summary: Fourteen Bravais Lattices in Three Dimensions

The 14 possible BRAVAIS LATTICES

\{note that spheres in this picture represent lattice points, not atoms!\}

Fourteen Bravais Lattices ...

HEXAGONAL
$a=b \neq c$
$\alpha=\beta=90^{\circ}$
$\gamma=120^{\circ}$
MONOCLINIC
$\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$
$\alpha=\gamma=90^{\circ}$
$\beta \neq 120^{\circ}$

TRIGONAL
$\mathrm{a}=\mathrm{b}=\mathrm{c}$
$\alpha=\beta=\gamma \neq 90^{\circ}$

TRICLINIC
$\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$
$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

4 Types of Unit Cell
$\mathbf{P}=$ Primitive
I = Body-Centred
F = Face-Centred
C=Side-Centred
$+$
7 Crystal Classes
$\rightarrow 14$ Bravais Lattices

Miller indices

A Miller index is a series of coprime integers that are inversely proportional to the intercepts of the crystal face or crystallographic planes with the edges of the unit cell.

It describes the orientation of a plane in the 3-D lattice with respect to the axes.

The general form of the Miller index is ($\mathrm{h}, \mathrm{k}, \mathrm{I}$) where h, k, and I are integers related to the unit cell along the $\mathrm{a}, \mathrm{b}, \mathrm{c}$ crystal axes.

What is this Direction ?????

Indices of Planes: Cubic Crystal

Figure 16 Indices of important planes in a cubic crystal. The plane (200) is parallel to (100) and to
$(\overline{1} 0(0)$.

examples

001 Plane

(a)

110 Planes

(b)

111 Planes

(c)

Crystallographic Directions

Algorithm

1. Vector is repositioned (if necessary) to pass through the Unit Cell origin.
2. Read off line projections (to principal axes of U.C.) in terms of unit cell dimensions a, b, and c
3. Adjust to smallest integer values
4. Enclose in square brackets, no commas

$$
[u v v]
$$

$$
\text { ex: } 1,0,1 / 2=>2,0,1=>[201]
$$

$-1,1,1=>[\overline{111}]$ where 'overbar' represents a negative index
families of directions <uVW>

d -spacing

$$
d_{h k l}=\frac{n}{\sqrt{\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}+\frac{l^{2}}{c^{2}}}}
$$

$$
d_{h k l}=\frac{a}{\sqrt{h^{\wedge} 2+k^{\wedge} 2+l^{\wedge} 2}}
$$

Example

The lattice constant for aluminum is
4.041 angstroms. What is d_{220} ?

$$
d_{h k l}=\frac{1}{\sqrt{\frac{h^{2}+k^{2}}{a^{2}}}}=\frac{1}{\sqrt{\frac{2^{2}+2^{2}}{4.041^{2}}}}=1.43 \text { angstroms }
$$

Theoretical Density, ρ

$$
\begin{aligned}
\text { Density }=\rho & =\frac{\text { Mass of Atoms in Unit Cell }}{\text { Total Volume of Unit Cell }} \\
\rho & =\frac{n A}{V_{C} N_{\mathrm{A}}}
\end{aligned}
$$

where $\quad n=$ number of atoms/unit cell
$A=$ atomic weight
$V_{C}=$ Volume of unit cell $=a^{3}$ for cubic
$N_{\mathrm{A}}=$ Avogadro's number
$=6.023 \times 10^{23}$ atoms $/ \mathrm{mol}$

Number of atoms per unit cell

Coordination Number

- For a Bravais Lattice, Coordination Number \equiv The number of lattice points closest to a given point (number of nearest-neighbors of each point).
- Because of lattice periodicity, all lattice points have the same number of nearest neighbors or coordination number. (Coordination number is intrinsic to the lattice.)

Examples

1. Simple Cubic (SC) coordination number $=6$
2. Body-Centered Cubic coordination number $=8$
3. Face-Centered Cubic coordination number $=12$

Arrangement of lattice points in the unit cell \& No. of Lattice points / cell

		Position of lattice points	Effective number of Lattice points / cell
1	P	8 Corners	$=8 \times(1 / 8)=1$
2	I	8 Corners $+$ 1 body centre	$=1($ for corners $)+1(\mathrm{BC})$
3	F	8 Corners $+$ 6 face centres	$\begin{aligned} & =1(\text { for corners })+6 \times(1 / 2) \\ & =4 \end{aligned}$
4	A/	$\begin{aligned} & 8 \text { corners } \\ & + \\ & 2 \text { centres of opposite faces } \end{aligned}$	$\begin{aligned} & =1(\text { for corners })+2 x(1 / 2) \\ & =2 \end{aligned}$

Atomic Packing Factor (Packing Fraction)

 - For a Bravais Lattice, The Atomic Packing Factor (APF) \equiv volume of the atoms within the unit cell divided by the volume of the unit cell.$$
\text { APF }=\frac{\text { Volume of Atoms in Unit Cell }}{\text { Volume of Unit Cell }}
$$

- When calculating the APF, the volume of the atoms in the unit cell is calculated AS IF each atom was a hard sphere, centered on the lattice point \& large enough to just touch the nearest-neighbor sphere.
- Of course, from Quantum Mechanics, we know that this is very unrealistic for any atom!!

1- CUBIC CRYSTAL SYSTEMS

3 Common Unit Cells with Cubic Symmetry

Simple Cubic Body Centered Face Centered (SC) Cubic (BCC) Cubic (FCC)

3 Common Unit Cells with Cubic

50

boce

Figure 8 The cubic space lattices. The cells shown are the conventional cells.
Table 2 Characteristics of cubic lattices ${ }^{\text {a }}$

	Simple		Body-centered
	Face-centered		
Volume, conventional cell	a^{3}	a^{3}	a^{3}
Lattice points per cell	1	2	4
Volume, primitive cell	a^{3}	$\frac{1}{2} a^{3}$	$\frac{1}{3} a^{3}$
Lattice points per unit volume	$1 / a^{3}$	$2 / a^{3}$	$4 / a^{3}$
Number of nearest neighbors	6	8	12
Nearest-neighbor distance	a	$3^{1 / 2} a / 2=0.866 a$	$a / 2^{1 / 2}=0.707 a$
Number of second neighbors	12	6	6
Second neighbor distance	$2^{1 / 2} a$	a	a
Packing fraction	$\frac{1}{\sqrt{3}} \pi$	$\frac{1}{5} \pi \sqrt{3}$	$\frac{1}{3} \pi \sqrt{2}$
	$=0524$	$=0.680$	$=0.740$

"The packing fraction is the maximum proportion of the available volume that can be filled with hard spheres.

a- Simple Cubic (SC) Lattice

- The SC Lattice has one lattice point in its unit cell, so it's unit cell is a primitive cell.
- In the unit cell on the left, the atoms at the corners are cut because only a portion (in this case 1/8) "belongs" to that cell. The rest of the atom "belongs" to neighboring cells.
Coordinatination Number of the SC Lattice $=6$.

Simple Cubic (SC) Lattice Atomic Packing Factor

b- Body Centered Cubic (BCC) Lattice

- The BCC Lattice has two lattice points per unit cell so the BCC unit cell is a non-primitive cell.
- Every BCC lattice point has 8 nearest- neighbors. So (in the hard sphere model) each atom is in contact with its neighbors only along the body-diagonal directions.
- Many metals (Fe,Li,Na..etc), including the alkalis and several transition elements have the BCC structure.

Body Centered Cubic (BCC) Structure

Body Centered Cubic and related structures

Body Centered Cubic (BCC) Lattice Atomic Packing Factor

$$
A P F_{B C C}=\frac{V_{\text {atoms }}}{V_{\text {unitcell }}}=0.68
$$

Elements That Form Solids with the BCC Structure

Table 4.2
ELEMENTS WITH THE MONATOMIC BODY-CENTERED CUBIC CRYSTAL STRUCTURE

ELEMENT	$a(\AA)$	ELEMENT	$a(\AA)$	ELEMENT	$a(\AA)$
Ba	5.02	Li	$3.49(78 \mathrm{~K})$	Ta	3.31
Cr	2.88	Mo	$3.15(5 \mathrm{~K})$	Tl	3.88
Cs	$6.05(78 \mathrm{~K})$	Na	4.23	3.02	
Fe	2.87	Nb	3.30	W	3.16
K	$5.23(5 \mathrm{~K})$	Rb	$5.59(5 \mathrm{~K})$		

c- Face Centered Cubic (FCC) Lattice - In the FCC Lattice there are atoms at the corners of the unit cell and at the center of each face.
-The FCC unit cell has 4 atoms so it is a non-primitive cell.
-Every FCC Lattice point has 12 nearest-neighbors.

- Many common metals (Cu,Ni,Pb..etc) crystallize in the FCC structure.

Face Centered cubic (FCし) atrycture

A1 (fcc) Structure

Closed-packed structures

(or, what does stacking fruit have to do with solid state physics?)

FCC: Conventional Cell With Basis

- We can also view the FCC lattice in terms of a conventional unit cell with a four point basis.
- Similarly, we can view the BCC lattice in terms of a conventional unit cell with a two point basis.

Simple Crystal Structures

- There are several crystal structures of common interest: sodium chloride, cesium chloride, hexagonal close-packed, diamond and cubic zinc sulfide.
- Each of these structures have many different realizations.

Face Centered Cubic (FCC) Lattice Atomic Packing Factor

$$
A P F_{\substack{\text { RCC } \\ \text { FCC }}}=\frac{V_{\text {atoms }}}{V_{\text {unitcell }}}=0.74^{-?}
$$

Elements That Form Solids with the FCC Structure

ELEMENTS WITH THE MONATOMIC FACE-CENTERED
CUBIC CRYSTAL STRUCTURE

ELEMENT	$a(\AA)$	ELEMENT	$a(\AA)$	ELEMENT	$a(\AA)$
Ar	$5.26(4.2 \mathrm{~K})$	Ir	3.84	Pt	3.92
Ag	4.09	Kr	$5.72(58 \mathrm{~K})$	$\delta-\mathrm{Pu}$	4.64
Al	4.05	La	5.30	Rh	3.80
Au	4.08	Ne	$4.43(4.2 \mathrm{~K})$	Sc	4.54
Ca	5.58	Ni	3.52	Sr	6.08
Ce	5.16	Pb	4.95	Th	5.08
$\beta-\mathrm{Co}$	3.55	Pd	3.89	$\mathrm{Xe}(58 \mathrm{~K})$	6.20
Cu	3.61	Pr	5.16	Yb	5.49

Data in Tables 4.1 to 4.7 are from R. W. G. Wyckoff, Crystal Structures, 2nd ed., Interscience, New York, 1963. In most cases, the data are taken at about room temperature and normal atmospheric pressure. For elements that exist in many forms the stable room temperature form (or forms) is given. For more detailed information, more precise lattice constants, and references, the Wyckoff work should be consulted.

Conventional Cells With a

- Alternatively, Basis the FCC Lattice can be viewed in terms of a Conventional Unit Cell with a 4point basis.
- Similarly, the BCC lattice can be viewed in terms of a Conventional Unit Cell with a 2point basis.

Comparison of the 3 Cubic Lattice Systems Unit Cell Contents

corner

face center sequels 1/8 2 cells
body center edge center

Lattice Type
P (Primitive)
I (Body Centered)
F (Face Centered)
$4[=(8 \times 1 / 8)+(6 \times$
Atoms per Cell
$1[=8 \times 1 / 8]$

$$
2[=(8 \times 1 / 8)+
$$

$(1 \times 1)]$

1/2)]

Factor

It is very easy to show that the filling of space by spheres is 74% eg for the foc unit cell of cubic close packing (CCP) with an $A B C$ layer repeat
For spheres of radius, r, touching along the face diagonal, the cubic unit cell parameter is calculated as $\mathrm{x}=2 \sqrt{2} \mathrm{r}$
total unitcell wolume $=x^{3}$

$$
=16 \cdot \sqrt{2} \mathrm{r}^{3}
$$

occupied volume $=4$ spheres

$$
=\frac{16 m^{3}}{3}
$$

space filling $=\frac{\pi}{3 \sqrt{2}}=74.05 \%$

2- HEXAGONAL CRYSTAL SYSTEMS

- In a Hexagonal Crystal System, three equal coplanar axes intersect at an angle of 60°, and another axis is perpendicular to the others and of a

The atoms are all the same.

Simple Hexagonal Bravais Lattice

Figure 4.19
The simple hexagonal Bravais lattice. Two-dimensional triangular nets (shown in inset) are stacked directly above one another, a distance c apart.

Hexagonal Close Packed (HCP) Lattice

Hexagonal Close Packed and related structures

Crystal	c / a	Crystal	c / a	Crystal	c / a
He	1.633	Zu	1.861	Zr	1.594
Be	1.581	Cd	1.886	Gd	1.592
Mg	1.623	Co	1.622	Lu	1.586
Ti	1.586	Y	1.570		

Hexagonal Close Packed (HCP) Lattice

- This is another structure that is common, particularly in metals. In addition to the two layers of atoms which form the base and the upper face of the hexagon, there is also an intervening layer of atoms arranged such that each of these atoms rest over a depression
 hotininn thrnnotome in

Hexagonal Close Packed (HCP) Lattice

(a)

(b)

The HCP lattice is not a Bravais lattice, because orientation of the environment of a point varies from layer to layer along the c -axis.

Hexagonal Close Packed (HCP) Lattice Bravais Lattice: Hexagonal Lattice $\mathrm{He}, \mathrm{Be}, \mathrm{Mg}, \mathrm{Hf}, \mathrm{Re}$ (Group II elements) ABABAB Type of

$$
a=b
$$

Angle between a \& $b=120^{\circ}$

$$
c=1.633 a,
$$

Basis: $(0,0,0)(2 / 3 a, 1 / 3 a, 1 / 2 c)$

CLOSE-PACKING OF SPHERES

A single layer of spheres is closest-packed with a HEXAGONAL coordination of each sphere

Comments on Close Packing

Close Packed

Sequence ABABAB: Hexagonal Close

Sequence ABAB:
Body Centered Cubic

Sequence ABCABCAB: Face Centered Cubic Close Packed

Sequence AAA: Simple Cubic

Hexagonal Close Packing

Figure 21 A close-packed layer of spheres is shown, with centers at points marked A. A second and identical layer of spheres can be placed on top of this, above and parallel to the plane of the drawing, with centers over the points marked B. There are two choices for a third layer. It can go in over A or over C. If it goes in over A the sequence is $A B A B A B \ldots$ and the structure is hexagonal close-packed. If the third layer goes in over C the sequence is $A B C A B C A B C \ldots$ and the structure is face-centered cubic.

HCP Lattice \equiv
 Hexagonal Bravais Lattice with a 2 Atom Basis

Figure 22 The hexagonal close-packed structure. The atom positions in this structure do not constitute a space lattice. The space lattice is simple hexagonal with a basis of two identical atoms associated with each lattice point. The lattice parameters a and c are indicated, where a is in the basal plane and c is the magnitude of the axis a_{3} of Fig. 14.

Comments on Close Packing

A second layer of spheres is placed in the indentations left by the first layer

- space is trapped between the layers that is not filled by the spheres
- TWO different types of HOLES (so-called INTERSTITIAL sites) are left
- OCTAHEDRAL (O) holes with 6 nearest sphere neighbours
- TETRAHEDRAL ($\mathrm{T} \pm$) holes with 4 nearest sphere neighbours

When a third layer of spheres is placed in the indentations of the second layer there are TWO choices

- The third layer lies in indentations directly in line (eclipsed) with the 1st layer
- Layer ordering may be described as ABA
- The third layer lies in the alternative indentations leaving it staggered with respect to both previous layers
- Layer ordering may be described as ABC
- More Complex close-packing sequences than simple HCP \& CCP are possible
- HCP \& CCP are merely the simplest close-packed stacking sequences, others are possible!
- All spheres in an HCP or CCP structure have identical environments
- Repeats of the form $\mathrm{ABCB} . .$. are the next simplest
- There are two types of sphere environment
- surrounding layers are both of the same type (i.e. anti-cuboctahedral coordination) like HCP , so labelled h
- surrounding layers are different (i.e. cuboctahedral coordination) like CCP, so labelled C
- Layer environment repeat is thus hchc...., so labelled hc
- Unit cell is alternatively labelled 4 H
- Has 4 layers in the c-direction
- Hexagonal
- The hc $(4 \mathrm{H})$ structure is adopted by early lanthanides
- Other Systems may be Classified as having Similar Structures

BUCKMINSTERFULLERENE

FCC

FOOT \& MOUTH VIRUS

Close-Packed Structures

$$
\begin{aligned}
& { }^{\bullet}+B^{\bullet} A+B^{\bullet} A+B^{0} A+B^{\bullet} A
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { ABCABC } \ldots \rightarrow \mathrm{fcc} \\
\text { ABABAB } \ldots \rightarrow \mathrm{hcp}
\end{array}
\end{aligned}
$$

3 - TRICLINIC \& 4 - MONOCLINIC CRYSTAL SYSTEMS

- Triclinic crystals have the least symmetry of any crystal systems. The three axes are each different lengths \& none are perpendicular to each other. These materials are the most difficult

Triclinic (Simple)

$$
\begin{gathered}
\alpha \neq \beta \neq \gamma \neq 90^{\circ} \\
a \neq b \neq c
\end{gathered}
$$

Monoclinic (Simple)
$\begin{gathered}\alpha=\gamma=90^{\circ}, \beta \neq 90^{\circ} \\ a \neq b \neq C\end{gathered}$

$$
\begin{gathered}
\alpha=\gamma=90^{\circ}, B \neq 90^{\circ} \\
a \neq b \neq c
\end{gathered}
$$

Monoclinic
(Base Centered)
$\alpha=\gamma=90^{\circ}, \beta \neq$ 90°
$a \neq b \neq c$

5 - ORTHORHOMBIC CRYSTAL SYSTEM

Orthorhombic

(Simple)
$\alpha=\beta=\gamma=90^{\circ}$
$a \neq b \neq c$

Orthorhombic (Body
 Centered)
 $\alpha=\beta=\gamma=90^{\circ}$
 $\mathrm{a} \neq \mathrm{D} \neq \mathrm{C}$

Orthorhombic (Base
 Centered)
 $\alpha=\beta=\gamma=90^{\circ}$ $a \neq b \neq c$

6 - TETRAGONAL CRYSTAL SYSTEM

$$
\begin{gathered}
\begin{array}{c}
\frac{\text { Tetragonal }}{(\text { Body }} \\
\text { Centered) })
\end{array} \\
\alpha=\beta=\gamma=90^{\circ}
\end{gathered}
$$

7 - RHOMBOHEDRAL (R) OR TRIGONAL CRYSTAL SYSTEM

Rhombohedral (R) or Trigonal (S)
$a=b=c, \alpha=\beta=\gamma \neq 90^{\circ}$

Simple Cubic Structure (SC)

- Rare due to low packing density (only Po - Polonium -has this structure)
- Close-packed directions are cube edges.

(Courtesy P.M. Anderson)

Atomic Packing Factor (APF)

$$
\begin{aligned}
& \text { APF }=\frac{\text { Volume of atoms in unit cell* }}{\text { Volume of unit cell }} \\
& \text { *assume hard spheres }
\end{aligned}
$$

- APF for a simple cubic structure $=0.52$

close-packed directions contains $(8 \times 1 / 8)=$

1 atom/unit cell
Adapted from Fig. 3.23,
Callister 7e.

Here: $\mathrm{a}=\mathrm{R}_{\mathrm{at}}{ }^{*} 2$
Where $R_{a t}$ is the 'handbook'
atomic radius

Body Centered Cubic Structure (BCC)

- Atoms touch each other along cube diagonals within a unit cell.
--Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.
ex: Cr, W, Fe (α), Tantalum, Molybdenum

- Coordination \# = 8

2 atoms/unit cell: (1 center) $+(8$ corners $\times 1 / 8$)

Atomic Packing Factor: BCC

Close-packed directions: length $=4 R=\sqrt{3} a$

Adapted from
Fig. 3.2(a), Callister 7e.

$$
\mathrm{APF}=\frac{3}{a^{3} \longleftarrow \frac{\text { volume }}{\text { unit cell }}}
$$

- APF for a body-centered cubic structure $=0.68$

Face Centered Cubic Structure (FCC)

- Atoms touch each other along face diagonals.
--Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.

ex: Al, Cu, Au, Pb, Ni, Pt, Ag

- Coordination \# = 12

Adapted from Fig. 3.1, Callister 7e.
4 atoms/unit cell: $(6$ face $\times 1 / 2)+(8$ corners $\times 1 / 8)$

Atomic Packing Factor: FCC

- APF for a face-centered cubic structure $=0.74$

The maximum achievable APF!
Close-packed directions:

$$
\begin{aligned}
& \text { length }=4 R=\sqrt{2} a \\
& \qquad\left(\mathrm{a}=2 \sqrt{2^{*}} \mathrm{R}\right)
\end{aligned}
$$

Unit cell contains:
$6 \times 1 / 2+8 \times 1 / 8$
$=4$ atoms/unit cell
Adapted from Fig. 3.1(a), Callister $7 e$.

Hexagonal Close-Packed Structure (HCP)
 ex: Cd, Mg, Ti, Zn

- ABAB... Stacking Sequence
- 3D Projection
- 2D Projection

- Coordination \# = 12

6 atoms/unit cell

- $\mathrm{APF}=0.74$
- $c / a=1.633$ (ideal)

We find that both FCC \& HCP are highest density packing schemes (APF = .74) - this illustration shows their differences as the closest packed planes are "built-up"

(a) Stacking of close-packed planes

(b) Stacking of close-packed planes

(d) Hexagonal close packed

Theoretical Density, ρ

$$
\begin{aligned}
\text { Density }=\rho & =\frac{\text { Mass of Atoms in Unit Cell }}{\text { Total Volume of Unit Cell }} \\
\rho & =\frac{n A}{V_{C} N_{\mathrm{A}}}
\end{aligned}
$$

where $\quad n=$ number of atoms/unit cell
$A=$ atomic weight
$V_{C}=$ Volume of unit cell $=a^{3}$ for cubic
$N_{\mathrm{A}}=$ Avogadro's number
$=6.023 \times 10^{23}$ atoms $/ \mathrm{mol}$

Theoretical Density, ρ

- Ex: Cr (BCC)

$$
\begin{aligned}
& A=52.00 \mathrm{~g} / \mathrm{mol} \\
& R=0.125 \mathrm{~nm} \\
& n=2
\end{aligned}
$$

$$
\therefore a=4 R / \sqrt{ } 3=0.2887 \mathrm{~nm}
$$

Locations in Lattices: Point Coordinates

Point coordinates for unit cell center are
$a / 2, b / 2, c / 2 \quad 1 / 21 / 21 / 2$

Point coordinates for unit cell (body diagonal) corner are 111

Translation: integer multiple of lattice constants \rightarrow identical position in another unit cell

Crystallographic Directions

Algorithm

1. Vector is repositioned (if necessary) to pass through the Unit Cell origin.
2. Read off line projections (to principal axes of U.C.) in terms of unit cell dimensions a, b, and c
3. Adjust to smallest integer values
4. Enclose in square brackets, no commas

$$
[u v v]
$$

$$
\text { ex: } 1,0,1 / 2=>2,0,1=>[201]
$$

$-1,1,1=>[\overline{111}]$ where 'overbar' represents a negative index
families of directions <uVW>

What is this Direction ?????

\underline{X}	\underline{y}	\underline{Z}
$\mathrm{a} / 2$	b	0 c
$1 / 2$	1	0
1	2	0
	$[120]$	

Linear Density - considers equivalance and is important in Slip

- Linear Density of Atoms $\equiv \mathrm{LD}=$ Unit length of direction vector

ex: linear density of Al in [110] direction

$$
a=0.405 \mathrm{~nm}
$$

\# atoms CENTERED on the direction of interest!
Length is of the direction of interest within the Unit Cell

Determining Angles Between Crystallographic Direction:

$\theta=\operatorname{Cos}^{-1}\left[\frac{u_{1} u_{2}+v_{1} v_{2}+w_{1} w_{2}}{\sqrt{\left(u_{1}^{2}+v_{1}^{2}+w_{1}^{2}\right) \bullet\left(u_{2}^{2}+v_{2}^{2}+w_{2}^{2}\right)}}\right]$

Where u_{i} 's , $v_{i}^{\prime} s \& w_{i}$'s are the "Miller Indices" of the directions in question

- also (for information) If a direction has the same Miller Indices as a plane, it is NORMAL to that plane

HCP Crystallographic Directions

Algorithm

1. Vector repositioned (if necessary) to pass through origin.
2. Read off projections in terms of unit cell dimensions a_{1}, a_{2}, a_{3}, or c
3. Adjust to smallest integer values
4. Enclose in square brackets, no commas
[uvtw]

Adapted from Fig. 3.8(a), Callister 7e.
ex: $\quad 1 / 2,1 / 2,-1,0$

$$
\Rightarrow \quad[11 \overline{2} 0]
$$

dashed red lines indicate projections onto a_{1} and a_{2} axes
a_{1}

HCP Crystallographic Directions

- Hexagonal Crystals
- 4 parameter Miller-Bravais lattice coordinates are related to the direction indices (i.e., $u \vee \mathcal{\prime} w$) in the ' 3 space' Bravais lattice as follows.

$$
\begin{aligned}
& {\left[u^{\prime} v^{\prime} w^{\prime}\right] \rightarrow[u v t w] } \\
& u=\frac{1}{3}\left(2 u^{\prime}-v^{\prime}\right) \\
& v=\frac{1}{3}\left(2 v^{\prime}-u^{\prime}\right) \\
& t=-(u+v) \\
& w=w^{\prime}
\end{aligned}
$$

Fig. 3.8(a), Callister 7e.

Computing HCP Miller- Bravais Directional Indices (an alternative way):

We confine ourselves to the bravais parallelopiped in the hexagon: $a_{1}-$ $\mathrm{a}_{2}-\mathrm{Z}$ and determine: ($u^{\prime}, v^{\prime} w^{\prime}$)

Here: [110] - so now apply the models to create M-B Indices

$$
\begin{aligned}
& u=1 / 3\left(2 u^{\prime}-v^{\prime}\right)=1 / 3(2 * 1-1)=1 / 3 \rightarrow 1 \\
& v=1 / 3\left(2 v^{\prime}-u^{\prime}\right)=1 / 3(2 * 1-1)=1 / 3 \rightarrow 1 \\
& t=-(u+v)=-(1 / 3+1 / 3)=-2 / 3 \rightarrow-2 \\
& w=w^{\prime}=0
\end{aligned}
$$

M-B Indices: [11 $\overline{2} 0$]
\# Similarly, the distance between any two
successive lattice points along the Y-direction
is taken as 'b'.
\# Here a and b are said to be lattice translational
vectors. Consider a square lattice in which $\mathrm{a}=\mathrm{b}$.

