Crystal Structures

Remember the seven systems are:
\neq Cubic (isometric)

+ Tetragonal
\nleftarrow Orthorhombic
\& Trigonal (rhombohedral)
\& Hexagonal
\& Monoclinic and
\& Triclinic

Coordination Number

It is The number of lattice points closest to a given point

Or

(number of nearest-neighbors of each point).

- Because of lattice periodicity, all lattice points have the same number of nearest neighbors or coordination number.

Examples

1. Simple Cubic (SC) coordination number $=6$
2. Body-Centered Cubic coordination number $=8$
3. Face-Centered Cubic coordination number $=12$

Number of atoms per unit cell

Arrangement of lattice points in the unit cell \& No. of Lattice points / cell

		Position of lattice points	Effective number of Lattice points $/$ cell
1	P	8 Corners	$=8 \mathrm{x}(1 / 8)=1$
2	I	8 Corners + 1 body centre	$=1$ (for corners) $+1(\mathrm{BC})$
3	F	8 Corners + 6 face centres	$=1$ (for corners) $+6 \times(1 / 2)$ $=4$
4	B/8 corners + 2 centres of opposite faces	$=2$	

Closed-packed structures

(or, what does stacking fruit have to do with solid state physics?)

The Atomic Packing Factor (APF) \equiv volume of the atoms within the unit cell divided by the volume of the unit cell.

$$
\mathrm{APF}=\frac{\text { Volume of Atoms in Unit Cell }}{\text { Volume of Unit Cell }}
$$

- When calculating the APF, the volume of the atoms in the unit cell is calculated $A S$ IF each atom was a hard sphere, centered on the lattice point \& large enough to just touch the nearest-neighbor sphere.

1- CUBIC CRYSTAL SYSTEMS 3 Common Unit Cells with

(a) Simple Cubic (SC)
(b) Body Centered

Cubic (BCC)

(c) Face Centered Cubic (FCC)

a- Simple Cubic (SC) Lattice

- The SC Lattice has one lattice point in its unit cell, so it's unit cell is a primitive cell.
- In the unit cell on the left, the atoms at the corners are cut because only a portion (in this case 1/8) "belongs" to that cell. The rest of the atom "belongs" to neighboring cells.

Coordinatination Number of the SC Lattice $=6$.

Atomic Packing Factor

b- Body Centered Cubic (BCC) Lattice

- The BCC Lattice has two lattice points per unit cell so the BCC unit cell is a non-primitive cell.
- Every BCC lattice point has 8 nearestneighbors. So (in the hard sphere model) each atom is in contact with its neighbors only along the body-diagonal directions.
- Many metals (Fe,Li,Na..etc), including the alkalis and several transition elements have the BCC structure.

Body Centered Cubic (BCC) Structure

Atomic Packing Factor

$$
A P F_{B C C}=\frac{V_{\text {atoms }}}{V_{\text {unitcell }}}=0.68
$$

Elements That Form Solids with the BCC Structure

Table 4.2
ELEMENTS WITH THE MONATOMIC BODY-CENTERED CUBIC CRYSTAL STRUCTURE

ELEMENT	$a(\AA)$	ELEMENT	$a(\AA)$	ELEMENT	$a(\AA)$
Ba	5.02	Li	$3.49(78 \mathrm{~K})$	Ta	3.31
Cr	2.88	Mo	3.15	Tl	3.88
Cs	$6.05(78 \mathrm{~K})$	Na	$4.23(5 \mathrm{~K})$	V	3.02
Fe	2.87	Nb	3.30	W	3.16
K	$5.23(5 \mathrm{~K})$	Rb	$5.59(5 \mathrm{~K})$		

c- Face Centered Cubic (FCC) Lattice

- In the FCC Lattice there are atoms at the corners of the unit cell and at the center of each face.
- The FCC unit cell has 4 atoms so it is a non-primitive cell.
- Every FCC Lattice point has 12 nearest-neighbors.
- Many common metals (Cu,Ni,Pb..etc) crystallize in the FCC structure.

Face Centered Cubic (FCC) Structure

A1 (fcc) Structure

Face Centered Cubic (FCC) Lattice Atomic Packing Factor

APF in this case $=0.74$

Elements That Form Solids with the FCC Structure

ELEMENTS WITH THE MONATOMIC FACE-CENTERED
CUBIC CRYSTAL STRUCTURE

ELEMENT	$a(\AA)$	ELEMENT	$a(\AA)$	ELEMENT	$a(\AA)$
Ar	$5.26(4.2 \mathrm{~K})$	Ir	3.84	Pt	3.92
Ag	4.09	Kr	$5.72(58 \mathrm{~K})$	$\delta-\mathrm{Pu}$	4.64
Al	4.05	La	5.30	Rh	3.80
Au	4.08	Ne	$4.43(4.2 \mathrm{~K})$	Sc	4.54
Ca	5.58	Ni	3.52	Sr	6.08
Ce	5.16	Pb	4.95	Th	5.08
$\beta-\mathrm{Co}$	3.55	Pd	3.89	$\mathrm{Xe}(58 \mathrm{~K})$	6.20
Cu	3.61	Pr	5.16	Yb	5.49

Data in Tables 4.1 to 4.7 are from R. W. G. Wyckoff, Crystal Structures, 2nd ed., Interscience, New York, 1963. In most cases, the data are taken at about room temperature and normal atmospheric pressure. For elements that exist in many forms the stable room temperature form (or forms) is given. For more detailed information, more precise lattice constants, and references, the Wyckoff work should be consulted.

Simple Cubic Structure (SC)

- Rare due to low packing density (only Po - Polonium -has this structure)
- Close-packed directions are cube edges.

(Courtesy P.M. Anderson)

Body Centered Cubic Structure (BCC)

- Atoms touch each other along cube diagonals within a unit cell.
--Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.
ex: Cr, W, Fe (α), Tantalum, Molybdenum

- Coordination \# = 8

2 atoms/unit cell: (1 center) $+(8$ corners $\times 1 / 8$)

Face Centered Cubic Structure (FCC)

- Atoms touch each other along face diagonals.
--Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.

ex: Al, Cu, Au, Pb, Ni, Pt, Ag

- Coordination \# = 12

Adapted from Fig. 3.1, Callister 7e.
4 atoms/unit cell: $(6$ face $\times 1 / 2)+(8$ corners $\times 1 / 8)$

