Crystal Structures

Lecture 6

1- Revision some points in the last lecture

- Hexagonal closed packing (HCP)
- •Symmetry
- Symmetry Operations
- •Octahedral and tetrahedral voids or holes

2- Element of Symmetry

3- Point group & Space group

Symmetry

A state in which parts on opposite sides of a plane, line, or point display arrangements that are related to one another via a symmetry operation such as translation, rotation, reflection or inversion.

Application of the symmetry operators leaves the entire crystal unchanged.

Symmetry Operations

- Rotation about an axis
- Translational
- Reflection at a plane
- Inversion, or center of symmetry
- Mirror plane
- Screw (=rotation + translation)
- Glide (=reflection + translation)

2- Symmetry Elements

Translational Symmetry

in repeating lattices, two additional symmetry elements

translational elements

 screw axis rotation and translation: n_r rotation by 360°/n; followed by translation of r/n along that axis (a, b or c) 2-fold screw axis most common: 2₁

 glide plane reflection and translation: a, b, c, n or d reflection across plane; followed by translation of 1/2 (usually) unit cell parallel to plane along a, b, c, face diagonal (n), or body diagonal (d)

Symmetry Elements

Screw axes (rotation + translation)

rotation about the axis of symmetry by $360^{\circ}/n$, followed by a translation parallel to the axis by r/n of the unit cell length in that direction. (r < n)

Symmetry Elements

Glide reflection (mirror plane + translation)

reflects the asymmetric unit across a mirror and then translates parallel to the mirror. A glide plane changes the handedness of figures in the asymmetric unit. There are no invariant points (points that map onto themselves) under a glide reflection. A point group is described by a characteristic assembly of symmetry operations. A certain number of symmetry operations with defined geometrical relations among themselves can be found for any given object. The object is said to have symmetry described by the given point group.

3- Point group and Space group

The combination of the 32 crystallographic point groups and the 14 Bravais lattices (which are again combinations of different crystal systems and non-centred or centred lattices) give rise to 230 different space groups

Space Groups						
tran	slational elements + 32 crystal point groups;					
	230 space groups					
230 di	stinct ways of packing repeating object in 3-D					

32 point symmetries

- 2 triclinic
- 3 monoclinic
- 3 orthorhombic
- -7 tetragonal
- 5 cubic
- 5 trigonal
- -7 hexagonal

plus the Bravais lattices yields 73 simple 3D Space Groups

+

plus compound operations (glide and screw operations) yields 157 more

= 230 space symmetry

cubic	Space Groups											
23 m3 (32	P23 Pm3 P432 P4 ₁ 32 P4 ₁ 32 P43m	F23 Pn3 P4 ₂ 32 I4 <u>1</u> 32 F43m	12: Fn F4 14:	triclinic	Space Groups							
432 43m				l T monoclini	P1 PI Centrosymmetric space groups nic							
m3m	Pm3m Fd3m	Pn3n Fd3c	Pn Im	2 m 2/m orthorho	P2 Pm P2/m mbic	P2 ₁ Pc P2 ₁ /m	C2 Cm C2/m	Cc P2/c	P21/c	C2/c		
				222 mm2	P222 I2 ₁ 2 ₁ 2 ₁ Pmm2 Pna2 ₁	P222 ₁ Pmc2 ₁ Pnn2 Cmc2	P21212 Pcc2 Ccc2 Edd2	P2 ₁ 2 ₁ 2 ₁ Pma2 Amm2 Imm2	C222 ₁ Pca2 ₁ Abm2 Uba2	C222 Pnc2 Ama2 Ima2	F222 Pmn2 ₁ Aba2	1222 Pba2 Fmm
				mmm	Pmmm Pbam Cmcm Immm	Pnnn Pccn Cmca Ibam	Pccm Pbcm Cmmm Ibca	Pban Pnnm Cccm Imma	Pmma Pmmn Cmma	Pnna Pbcn Ccca	Pmna Pbca Fmmm	Pcca Pnma Fddd

