Maintenance of Constancy of the Internal Environment during Fish Migration Between Fresh and Seawater

Group 4: Kuan Yi Xian, Jeeann Lee Tien Ming Lee Tze Chuen Lee Wan-Jean Lee Yee Tjin

Migration

Seasonal movement of complete populations of animals to a more favourable environment

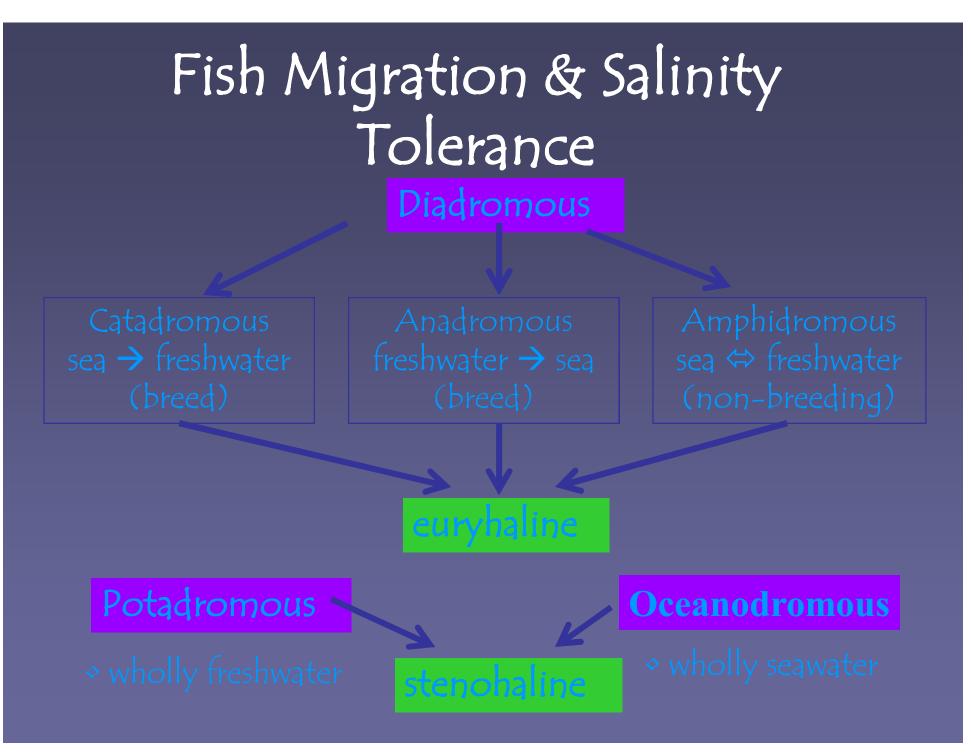
Migratory Fish Diadromous

Catadromous sea → freshwater (breed)

Anadromous freshwater → sea (breed)

Amphidromous sea ⇔ freshwater (non-breeding)

Potadromous


wholly freshwater

Oceanodromous

♦ wholly seawater

Salinity Tolerance

- Euryhaline animals =
- aquatic animals that can withstand large variations in salinity of their environment
 - Stenohaline -
- animals that can only survive within a limited range of salinity

Osmoregulation in fish

Problems arising from differences in salinity

Impact on the physiology of the fish
 body fluid
 body volume

Possible mechanisms for osmoregulation
 kidney

- ◊ gut
- ♦ gill
- ♦ hormones

1) Salinity

> Saltwater has a high amount of dissolved monovalent ions like Na^+ , Cl^- and divalent ions.

> Freshwater has a lower amount of ions.

lon	Soft lake water	River water*	Hard river water	Saline water ^d	Dead Sea"
Sodium	0.17	0.39	6.13	640	1955
Magnesium	0.15	0.21	0.66	6	2028
Calcium	0.22	0.52	5.01	32	481
Potassium	-	0.04	0.11	16	219
Chloride	0.03	0.23	13.44	630	7112
Sulfate	0.09	0.21	1.40	54	5.3
Bicarbonate	0.43	1.11	1.39	3	3.7

* Lake Nipissing, Ontario.

^b Mean composition of North American rivers.

^c Tuscarawas River, Ohio.

^d Bad Water, Death Valley, California.

* Dead Sea, Israel. This water also contains 74 mmol per kg H2O of bromide.

2) Temperature

➤The temperature of the water body is effected by its size.

most freshwater environments have smaller body and thus have higher temperature.

➤Temperature is also effected by the amount of ions in the water.

3) Stability

➤Seawater VS Freshwater

 Seawater more stable than freshwater as freshwater environments are subjected to more changes than seawater environments.
 Swamp-water VS Freshwater

Freshwater more than swamp-water as swamp-water environment conditions fluctuate more frequently than freshwater environments.

4) pH

>pH in seawater is slightly more alkaline due to the presence of mono-ions like Mg^+ , Ca^{2+} , etc.

▶pH of freshwater environs are highly variable due to runoff from rain, etc.

➤Teleost plasma concentrations are 30% to that of seawater.

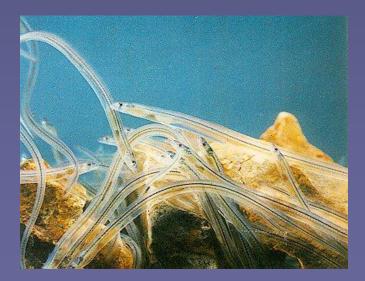
Fish migrating between saltwater and freshwater environments encounter extreme osmotic pressures which is deadly unless controlled.

2 types of migrations
 Anadromous migration
 Catadromous migration

Anadromous Migrations (Freshwater to Saltwater)

> Fish enters a more hyper-osmotic environment than it's own internal environment.

➤Water loss through urine and permeable gills.


➤Consumption of hyper-tonic water and food increases internal salt content.

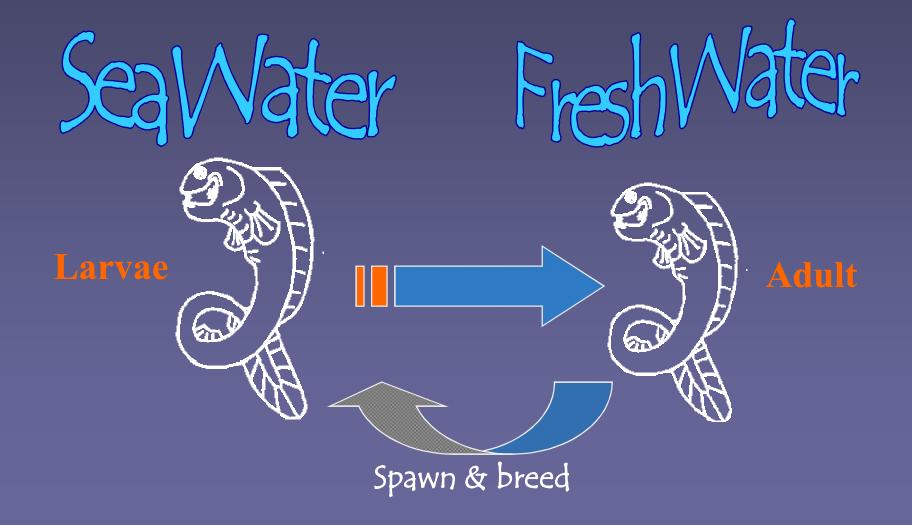
➢ Fish volume decreases, osmotic balance and metabolism disturbed.

Catadromous Migrations (Saltwater to Freshwater)

- > Fish enters a more hypo-osmotic environment than it's own internal environment.
- >Water gain through permeable gills and drinking.

European eel, *Anguilla Anguilla*

➢ Fish volume increases, osmotic balance and metabolism disturbed.


➤Other than pressures from salinity, fluctuation in pH and temperature of the new environment might also disturb the fish's metabolisms, leading to dire effects.

Eels (catadromic teleosts)

Life Cycle of Eels & their Physiological Adaptations

In SeaWater

- Fish is osmotically more dilute than the medium
- Constant loss of water thru gills and urine
 - Compensate by drinking seawater

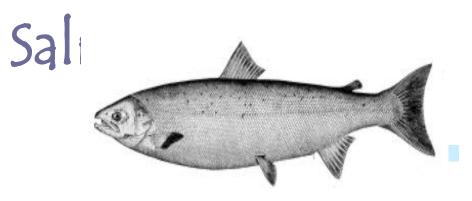
In SeaWater (continued...)

- Ingested salts (Na⁺, Cl⁻) are absorbed in the intestine & eliminated via the gills by active transport
 - Mg^{2+} and SO_4^{2-} are excreted by the kidney

In FreshWater

 Fish is osmotically more concentrated than the medium
 Suffers steady osmotic influx of water thru the gills
 Excess water excreted as urine

In FreshWater (continued...)



- Large urine volume loss causes substantial loss of solutes
- Slightly permeable to ions, solutes are also lost thru the gills
- Solutes taken in with food & main uptake by active transport in gills

To maintain steady state during Diadromy in Eels

1. Osmotic flow of water changes direction

2. Active ion transport in gills also changes direction:
@ to achieve steady state and
@ compensate for solute gain/loss

- Physical, biochemical and metapolic changes
 - Main organs involved in osmoregulation
 - Hormonal changes

Types of Salmon

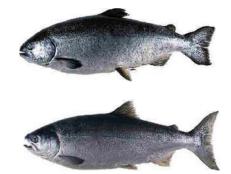
Pacific Salmon

Chinook (king) salmon

(Oncorhynchus tshawytscha)

Coho (silver) salmon

(Oncorhynchus keta)


Chum (dog) salmon

(Oncorhynchus kisutch)

Pink (humpback) salmon (Oncorhynchus gorbuscha)

Sockeye (red) salmon

(Oncorrhynchus nerka)

Types of Salmon

Asia Pacific Salmon

- Masu salmon (*Oncorhynchus masou*) (yamame)
- Amago salmon (*Oncorhynchus rhodurus*) (biwamasu)

Atlantic Salmon

- Atlantic s
- Steelhead trout (anadromous form of rainbow trout) (*Oncorhynchus mykiss*)

Physical Changes

- 1. Silvery appearance of smolt
- 2. Emergence and growth of teeth in coho salmon
- 3. Growth and changes in shape of integumentary folds
- 4. Growth of scales
- 5. Body shape differences

Biochemical & Metabolic changes

- Increase of oxygen consumption
 Changes in haemoglobin form
- 3. Increase in blood ATP concentration
- 4. Decrease in total lipid content
- 5. Decrease in liver glycogen
- 6. Increase in body water content
- 7. Decline in general protein content
- 8. Changes in amino acids production

Main Organs in Osmoregulation

Kidney-urinary system Gills

Hormonal Regulation

- Prolatin Table Cortisol
- Growth Hormone Angiotensin

Conclusion

Countermeasures

- drinking large amount of SW ingested monovalents absorbed in intestine removed via gills by activetransport - divalent by kidney 1 - cortisol : CC no. Î - GH: const bld plasma Na - PRL: urine vol.

Problems FW SW

higher [osm] in SW-- water efflux - primary : gills - urine

Countermeasures

ions intake by active absorption in gills and food
f - cortisol : CC no.
f - PRL: urine vol.

Problems SV FW

lower [osm] in FW--steady water influx -primary : gills -excess excreted as urine -large amount dilute urine -loss of solute

Î