5. Abdelkader, T. K., Salem, A. E., Zhang, Y., Gaballah, E. S., Makram, S. O., & Fan, Q. (2021). Energy and exergy analysis of carbon nanotubes-based solar dryer. Journal of Energy Storage, 39, 102623.

Abstract

Solar dryers play a pivotal role in minimizing drying energy consumption in small farms. Therefore, its development is an urgent need. In this study, a developed solar dryer comprised of a smooth solar air heater, shell and tube storage unit, and drying chamber, has been constructed and tested to dry a Chinese medicinal fungus (Poria Cocos). The dryer has been operated under two airflow rates and then, energy and exergy analysis applied to the system. The results show that: solar air heater averaged thermal and exergy efficiency were 66.2% and 4.6%, 70.2 and 4.4% for 1st and 2nd experiments, respectively. Carbon nanotubes- paraffin wax shell and tube storage unit averaged overall thermal efficiency was 12.2% and 19.6% leading to 8.1% and 11.9% as averaged overall exergy efficiency for 1st and 2nd experiments, respectively. The specific energy consumption (SEC) was 6.545 and 7.917 kWh / kg moisture, also, the dryer's overall thermal efficiency was 36.4 and 30%, for 1st and 2nd experiments, respectively. The final moisture content of Poria Cocos was in the range of 6.6-8% w.b. The system payback period is 1.55 years.

	Journal of Energy Storage 39 (2021) 102623	
	Contents lists available at ScienceDirect	Energy
	Journal of Energy Storage	Storage
ELSEVIER	journal homepage: www.elsevier.com/locate/est	
Tarek Kh. Abde Sarah O. Makra ^a College of Engineering H ^b Agricultural Engineering I ^c Agricultural Economics D	exergy analysis of carbon nanotubes-based solar dryer Ikader ^{a,b} , Abouelnadar El. Salem ^{a,d} , Yanlin Zhang ^a , Eid S. Gaballah ^b , m ^c , Qizhou Fan ^{a,*} aahong Agriculard University, Shisishan Street, Hongshan District, Wuhan 430070, China eparment, Faculty of Agriculture, Payoum University, 63514 Payoum, Egypt parment, Faculty of Agriculture, Payoum University, 63514 Payoum, Egypt ent, Desert Research Center, 11753, Matariya, Cairo, Egypt	Check for updates
ARTICLE INF	D A B S T R A C T	
Keywords: Indirect solar dryer Shell and tube storage un CMTs-paraffin wax Poria Cocos drying	Solar dryers play a pivotal role in minimizing drying energy consumption in small farms. T opment is an urgent need. In this study, a developed solar dryer comprised of a smooth solar a tube storage unit, and drying chamber, has been constructed and tested to dry a Chinese med Coccos). The dryer has been operated under two airflow rates and then, energy and exergy and system. The results show that: solar air heater averaged thermal and exergy efficiency wer 70.2 and 4.4% for 1 ⁷ and 2 nd experiments, respectively. Carbon natotubes- paraffin wax shb unit averaged overall thermal efficiency was 12.2% and 19.6% leading to 8.1% and 11.9%. exergy efficiency for 1 st and 2 nd experiments, respectively. The specific energy consumption (1 7.917 kWh / kg moisture, also, the dryer's overall thermal efficiency was 36.4 and 30%, periments, respectively. The final moisture content of Poria Coccos was in the range of 6.6-8 paphack period is 1.55 years.	air heater, shell and icinal fungus (Poria alysis applied to the e 66.2% and 4.6%, ell and tube storage as averaged overall SEC) was 6.545 and for 1 st and 2 nd ex-