البحث الثاني

Biosorption and biodegradation of the antifouling compound Tributylin TBT by Microalgae.

بحث مشترك وغير مستمد من رسائل علمية المجلة المنشور بها البحث

American-Eurasian Journal of Scientific Research 4 (1): 1-6.

Hala M. Taha, Hanan A. Said, Nasser H. Abbas, and Abdel Fattah M. Khaleafa

ABSTRACT

The biosorption and biodegradation of tributylin (TBT) at its sublethal concentration of the two unicellular algae Nannochloropsis oculata (a wallcelled stigmatophyte alga) and Dunaliella parva (a well-less chlorophyte alga) are investigated. The initial concentration of TBT in culture media of N. oculata was reduced by 46% within two days, while in D. parva it decreased stepwise reaching 50% within 6 days. At the end of the experiment (12 days) both algae sorped nearly 80% of the initial TBT content. The extracellular analysis of TBT cleared that biosorption by the algal cell wall of N. oculata was the major mechanism in reducing 40% of the initial TBT in the first two days (6% may be diffused through the cell wall of the alga). On the contrary, a very small amount of TBT was recorded on the outer membrane of D. parva, which disappeared after 4 days. The occurrence of DBT and MBT during the first few days in the culture media of *D. parva* and their absence in culture of *N. oculata* may support the fact that *D. parva* has a special internal mechanism for degrading TBT to the less toxic fractions DBT and MBT. In both algae the diffusion of TBT- which started early in D. parva – caused gradual increase in the intracellular concentration of TBT as time proceeded reaching maximum after 6 days in *D. parva* and 8 days in *N. oculata*. The gradual increase in the content of MBT on the expense of TBT and DBT may be the reason for the tolerance of *D. parva* to the toxicity of TBT.