البحث الثاني (بحث رقم 5 في قائمة الأبحاثمحل تقييم اللجنة الموقرة)

Title	Titanium(III) Member of the Family of Trigonal Building Blocks
	withScorpionate and Cyanide Ligands.
	متراكب التيتانيوم الثلاثي للسيانيد والمركبات العقربية المانحة
Authors	Andrew Brown, Mohamed Saber, Willem Van den Heuvel, Kelsey
	Schulte, Alessandro Soncini, and Kim R. Dunbar
Journal Information	Inorg. Chem. 2017, 56, 1031–1035
ISSN	0020-1669
Impact factor	Q1 - 4.825 (2019)

Abstract:

A series of mononuclear titanium complexes; [Et4N][Tp*TiCl3] (1) ([Et4N] =tetraethylamonium;Tp* 3,5-dimethyltrispyrazolylhydroborate), = [Tp*TiCl2pz*]pz* (2; pz* = 3.5-dimethylpyrazole) and the first example of a trigonal titanium(III)cyanide molecule[Et4N][Tp*Ti(CN)3](3)were synthesized and structurally chracterized using spectroscopic (IR, UV) and single crystal Xray measurements which reveals trigonally distorted octahedral coordination geometry. Magneticdata and ab initio calculations of 1 and 3verified that the molecule is an S = 1/2 paramagnet and that it exhibits significant temperatureindependent paramagnetism. To further understand the magnetic properties of 1 and 3, single-point calculations were performed using crystallographic parameters. The electronic configuration of TiIII is d1, which gives rise, in the ligand field, to five spin doublet states. These wereobtained from a complete active space selfconsistent field(CASSCF) calculation, followed by a second-order perturbation calculation (CASPT2). The computed g values; [Tp TiCl3] : g =

1.96, $g \perp = 1.71$, [Tp Ti(CN)3] : $g \parallel = 1.97$, $g \perp = 1.77$ are inline with experimental values and the stronger ligand field of CN ligands. This newbuilding block may lead to anisotropy in higher-nuclearitycompounds depending on the degree of distortion imposed byadditional metal spin centers bonded through the nitrogen end of the cyanide ligands.