SOME PROPERTIES OF r- T_2 SPACES

A.A.Ramadan

Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt

M. El Dardery

Faculty of Science, Department of Mathematics, Fayoum University,

Fayoum, Egypt

Y.C.Kim

Department of Mathematics, Kangnung National University, Korea

Abstract. We introduce r- T_2 spaces in fuzzy topological spaces in view of Šostak[22] and investigate some properties of r- T_2 spaces. Moreover, we study properties of subspaces and products of r- T_2 spaces.

1. Introduction and preliminaries

Šostak [22] introduced the fundamental concept of a fuzzy topological structure as an extension of both crisp topology and Chang fuzzy topology [3]. It has been developed in many directions [6,8,9,11,12,13,14,18]. In [1,2,4,5,7,10,17,21,23], the various separation axioms were introduced in fuzzy topological spaces in a sense of Chang [3] or Lowen [15]. Srivastava [24] introduced separation axioms in a view of the definition of Hazra.et.al. [8].

In this paper, we define r- T_2 space in fuzzy topological spaces in a view of the definition of Sostak. We investigate some properties of r- T_2 spaces. In particular, we study properties of subspaces and products of r- T_2 spaces.

Throughout this paper, let X be a nonempty set, I = [0, 1] and $I_0 = (0, 1]$. For $\alpha \in I$, $\overline{\alpha}(x) = \alpha$ for all $x \in X$. A fuzzy point x_t for $t \in I_0$ is an element of I^X such that

$$x_t(y) = \begin{cases} t, & \text{if } y = x, \\ 0, & \text{if } y \neq x. \end{cases}$$

¹⁹⁹¹ Mathematics Subject Classification. 54A40.

Key words and phrases. r- T_2 spaces, subspaces and products of r- T_2 spaces.

The set of all fuzzy points in X is denoted by Pt(X). A fuzzy point $x_t \in \lambda$ iff $t \leq \lambda(x)$. A fuzzy set λ is quasi-coincident with μ , denoted by $\lambda q \mu$, if there exists $x \in X$ such that $\lambda(x) + \mu(x) > 1$. If λ is not quasi-coincident with μ , we denote $\lambda \overline{q} \mu$.

Definition 1.1([22]). A function $\tau: I^X \to I$ is called a *fuzzy topology* on X if it satisfies the following conditions:

- (O1) $\tau(\overline{0}) = \tau(\overline{1}) = 1$.
- (O2) $\tau(\mu_1 \wedge \mu_2) \geq \tau(\mu_1) \wedge \tau(\mu_2)$ for each $\mu_1, \mu_2 \in I^X$.
- (O3) $\tau(\bigvee_{i\in\Gamma}\mu_i) \ge \bigwedge_{i\in\Gamma}\tau(\mu_i)$ for any $\{\mu_i\}_{i\in\Gamma} \subset I^X$.

The pair (X, τ) is called a fuzzy topological space.

Let τ_1 and τ_2 be fuzzy topologies on X. We say τ_1 is finer than τ_2 (τ_2 is coarser than τ_1) if $\tau_2(\mu) \leq \tau_1(\mu)$ for all $\mu \in I^X$.

Theorem 1.2 ([8]). Let (X, τ) be a fuzzy topological space. For each $r \in I_0, \lambda \in I^X$, we define an operator $C_\tau : I^X \times I_0 \to I^X$ as follows:

$$C_{\tau}(\lambda, r) = \bigwedge \{ \mu \mid \mu \ge \lambda, \tau(\overline{1} - \mu) \ge r \}.$$

Then it satisfies the following properties:

- (1) $C_{\tau}(\overline{0},r) = \overline{0}, C_{\tau}(\overline{1},r) = \overline{1}, \text{ for all } r \in I_0.$
- (2) $C_{\tau}(\lambda, r) \geq \lambda$.
- (3) $C_{\tau}(\lambda_1, r) \leq C_{\tau}(\lambda_2, r)$, if $\lambda_1 \leq \lambda_2$.
- (4) $C_{\tau}(\lambda \vee \mu, r) = C_{\tau}(\lambda, r) \vee C_{\tau}(\mu, r)$, for all $r \in I_0$.
- (5) $C_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, r')$, if $r \leq r'$, where $r, r' \in I_0$.
- (6) $C_{\tau}(C_{\tau}(\lambda, r), r) = C_{\tau}(\lambda, r).$

Definition 1.3 ([11]). Let $\overline{0} \notin \Theta_X$ be a subset of I^X . A function $\beta : \Theta_X \to I$ is called a *fuzzy topological base* on X if it satisfies the following conditions:

- (B1) $\beta(\overline{1}) = 1$.
- (B2) $\beta(\mu_1 \wedge \mu_2) \geq \beta(\mu_1) \wedge \beta(\mu_2)$, for all $\mu_1, \mu_2 \in \Theta_X$.

A fuzzy topological base β always generates a fuzzy topology τ_{β} on X in the following sense:

Theorem 1.4 ([11]). Let β be a fuzzy topological base on X. Define the function $\tau_{\beta}: I^X \to I$ as follows: for each $\mu \in I^X$,

$$\tau_{\beta}(\mu) = \begin{cases} \bigvee \{ \bigwedge_{i \in J} \beta(\mu_i) \} & \text{if } \mu = \bigvee_{i \in J} \mu_i, \quad \mu_j \in \Theta_X, \\ 1 & \text{if } \mu = \overline{0}, \\ 0 & \text{otherwise} \end{cases}$$

where the first \bigvee is taken over all families $\{\mu_i \in \Theta_X \mid \mu = \bigvee_{i \in J} \mu_i\}$. Then (X, τ_β) is a fuzzy topological space.

Let (X, τ_1) and (Y, τ_2) be fuzzy topological spaces. A function $f: (X, \tau_1) \to (Y, \tau_2)$ is called fuzzy continuous if $\tau_2(\mu) \leq \tau_1(f^{-1}(\mu))$ for all $\mu \in I^Y$.

Theorem 1.5 ([11]). Let $(X_i, \tau_i)_{i \in \Gamma}$ be fuzzy topological spaces and X a set and $f_i : X \to X_i$ a function, for each $i \in \Gamma$. Let $\Theta_X = \{\overline{0} \neq \mu = \bigwedge_{i \in F} f_i^{-1}(\nu_i) \mid \tau_i(\nu_i) > 0, i \in F\}$ be given, for every finite index set $F \subset \Gamma$. Define a function $\beta : \Theta_X \to I$ on X by

$$\beta(\mu) = \bigvee \{ \bigwedge_{i \in F} \tau_i(\nu_i) \mid \mu = \bigwedge_{i \in F} f_i^{-1}(\nu_i) \}$$

where the first \bigvee is taken over all finite index subset F of Γ . Then:

- (1) β is a fuzzy topological base on X.
- (2) The fuzzy topology τ_{β} generated by β is the coarsest fuzzy topology on X for which each $i \in \Gamma$, f_i is fuzzy continuous.
- (3) A map $f:(Z,\tau_Z)\to (X,\tau_\beta)$ is fuzzy continuous iff for each $i\in\Gamma,\ f_i\circ f$ is fuzzy continuous.

From Theorem 1.5, we can define the following definitions.

Definition 1.6 ([11]). Let (X, τ) be a fuzzy topological space and A be a subset of X. The pair $(A, \tau|_A)$ is said to be a *subspace* of (X, τ) if $\tau|_A$ is the coarsest fuzzy topology on A for which the inclusion map i is fuzzy continuous.

Definition 1.7 ([11]). Let X be the product $\prod_{i \in \Gamma} X_i$ of the family $\{(X_i, \tau_i) \mid i \in \Gamma\}$ of fuzzy topological spaces. The the coarsest fuzzy topology $\tau = \bigotimes \tau_i$ on X for which each the projections $\pi_i : X \to X_i$ is fuzzy continuous is called the *product fuzzy topology* of $\{\tau_i \mid i \in \Gamma\}$, and (X, τ) is called the *product fuzzy topology space*.

2. The properties of r- T_2 spaces

Definition 2.1. Let (X, τ) be a fuzzy topological space. A fuzzy set $\mu \in I^X$ is called a r- \mathcal{Q}_{τ} open neighborhood of x_t if $x_t \neq \mu$ and $\tau(\mu) \geq r$. We denote

$$\mathcal{Q}_{\tau}(x_t, r) = \{ \mu \in I^X \mid x_t \ q \ \mu, \ \tau(\mu) \ge r \}.$$

Definition 2.2. A fuzzy topological space (X, τ) is said to be a r- T_2 -space if for each $x_t, y_s \in Pt(X)$ such that $x \neq y$, there exist $\lambda \in Q_\tau(x_t, r)$ and $\mu \in Q_\tau(y_s, r)$ such that $\lambda \wedge \mu = \overline{0}$.

Theorem 2.3. A fuzzy topological space (X, τ) is r- T_2 iff for each $x_t, y_s \in Pt(X)$ such that $x \neq y$, and t, s < 1, there exist $\lambda, \mu \in I^X$ such that $x_t \in \lambda, \ \tau(\lambda) \geq r$, $y_s \in \mu, \ \tau(\mu) \geq r$ and $\lambda \wedge \mu = \overline{0}$.

Proof. (\Rightarrow) For each $x_t, y_s \in Pt(X)$ such that $x \neq y$, and t, s < 1, $x_{1-t}, y_{1-s} \in Pt(X)$. Since (X, τ) is r- T_2 , there exist $\lambda \in Q_{\tau}(x_{1-t}, r)$ and $\mu \in Q_{\tau}(y_{1-s}, r)$ such that $\lambda \wedge \mu = \overline{0}$. Thus, $\lambda \in Q_{\tau}(x_{1-t}, r)$ implies $x_t \in \lambda$ and $\tau(\lambda) \geq r$. Thus, $\mu \in Q_{\tau}(y_{1-s}, r)$ implies $y_s \in \mu$ and $\tau(\mu) \geq r$.

 (\Leftarrow) Let $x_t, y_s \in Pt(X)$ such that $x \neq y$. Let t, s < 1. For $x_{1-t}, y_{1-s} \in Pt(X)$, there exist $\lambda, \mu \in I^X$ such that $x_{1-t} \in \lambda, \tau(\lambda) \geq r$, $y_{1-s} \in \mu, \tau(\mu) \geq r$ and $\lambda \wedge \mu = \overline{0}$. It implies $\lambda \in Q_{\tau}(x_t, r)$ and $\mu \in Q_{\tau}(y_s, r)$.

If t=1 or s=1, let t=1 and s<1. There exists 0< p<1 such that $x_p,y_{1-s}\in Pt(X)$. Then there exist $\lambda,\mu\in I^X$ such that $x_p\in\lambda$ $\tau(\lambda)\geq r$, $y_{1-s}\in\mu$ $\tau(\mu)\geq r$ and $\lambda\wedge\mu=\overline{0}$. Thus, $x_t \ q \ \lambda$ and $y_s \ q \ \mu$. Hence $\lambda\in Q_\tau(x_t,r)$ and $\mu\in Q_\tau(y_s,r)$ such that $\lambda\wedge\mu=\overline{0}$. Hence (X,τ) is r- T_2 . \square

Theorem 2.4. A fuzzy topological space (X, τ) is r- T_2 iff for each $x_t, y_t \in Pt(X)$ such that $x \neq y$, there exist $\lambda \in Q_\tau(x_t, r)$ and $\mu \in Q_\tau(y_t, r)$ such that $\lambda \wedge \mu = \overline{0}$.

Proof. (\Rightarrow) It is trivial.

(\Leftarrow) Let $x_t, y_s \in Pt(X)$ such that $x \neq y$ and t < s. Since for each $x_t, y_t \in Pt(X)$, there exist $\lambda \in Q_{\tau}(x_t, r)$ and $\mu \in Q_{\tau}(y_t, r)$ such that $\lambda \wedge \mu = \overline{0}$, then $y_t \neq 0$ implies $y_s \neq 0$. Hence (X, τ) is r- T_2 . \square

Definition 2.5 ([16]). Let D be a directed set. A function $S: D \to Pt(X)$ is called a *fuzzy net*.

Definition 2.6. Let (X, τ) be a fuzzy topological space, $\mu \in I^X$, $x_t \in Pt(X)$ and $r \in I_0$. A fuzzy point x_t is called a fuzzy r-limit point of S, denoted by $S \xrightarrow{r} x_t$, if for every $\mu \in Q_\tau(x_t, r)$, there exists $n_0 \in D$ such that for each $n \in D$ with $n \ge n_0$, we have $S(n) \neq \mu$.

We denote

$$\lim_{\tau}(S,r) = \bigvee \{x_t \in Pt(X) \mid x_t \text{ is a fuzzy r-limit point of } S\}.$$

For $\lambda \in I^X$, we denote $supp(\lambda) = \{x \in X \mid \lambda(x) > 0\}$ and $|supp(\lambda)|$ is the cardinal number of $supp(\lambda)$.

Theorem 2.7. Let (X, τ) be a fuzzy topological space. Then the following statements are equivalent.

- (1) (X, τ) is r- T_2 .
- (2) For each fuzzy net S, $|supp(lim_{\tau}(S,r))| \leq 1$.

Proof. (1) \Rightarrow (2) Suppose there exists a fuzzy net $S: D \to Pt(X)$ such that $|supp(lim_{\tau}(S,r))| \geq 2$. There exist $x \neq y \in supp(lim_{\tau}(S,r))$ such that $S \xrightarrow{r} x_t, y_s$. Since (X,τ) is r- T_2 , there exist $\lambda \in Q_{\tau}(x_t,r)$ and $\mu \in Q_{\tau}(y_s,r)$ such that $\lambda \wedge \mu = \overline{0}$. Since $S \xrightarrow{r} x_t, y_s$, there exist n_1, n_2 such that

$$\forall n \geq n_1, \ S(n) \ q \ \lambda,$$

$$\forall n > n_2, \ S(n) \ q \ \mu.$$

Since D is a directed set, there exists $n_3 \ge n_1, n_2$ such that

$$\forall n \geq n_3, \ S(n) \ q \ \lambda, \ S(n) \ q \ \mu.$$

It implies S(n) $q \lambda \wedge \mu$, for all $n \geq n_3$. Since $\lambda \wedge \mu = \overline{0}$, it is a contradiction.

 $(2) \Rightarrow (1)$ Let (X, τ) be not r- T_2 . Then there exist $x_t, y_s \in Pt(X)$ with $x \neq y$ such that for all $\lambda \in Q_\tau(x_t, r)$ and for all $\mu \in Q_\tau(y_s, r)$, we have $\lambda \wedge \mu \neq \overline{0}$. Define a relation on $D = \{\lambda \wedge \mu \mid \lambda \in Q_\tau(x_t, r), \mu \in Q_\tau(y_s, r)\}$ by

$$\lambda_1 \wedge \mu_1 \prec \lambda_2 \wedge \mu_2 \text{ iff } \lambda_1 \geq \lambda_2, \mu_1 \geq \mu_2.$$

Then (D, \prec) is a directed set. For each $\lambda \wedge \mu \in D$, since $\lambda \wedge \mu \neq \overline{0}$, there exist $z \in X$ and $p \in I_0$ such that $(\lambda \wedge \mu)(z) > 1 - p > 0$. Then $z_p \ q \ \lambda \wedge \mu$. Thus, we can define a fuzzy net $S: D \to Pt(X)$ by

$$S(\lambda \wedge \mu) = z_p$$
, that is, $S(\lambda \wedge \mu) = \lambda \wedge \mu$.

For every $\lambda \in Q_{\tau}(x_t, r)$, there exists $\lambda = \lambda \wedge \overline{1} \in D$ such that for all $\rho \in D$ with $\lambda \prec \rho$, we have $S(\rho)$ q ρ . Since $\rho \leq \lambda$, we have $S(\rho)$ q λ . Hence $x_t \in lim_{\tau}(S, r)$. Similarly, $y_s \in lim_{\tau}(S, r)$. Thus, $|supp(lim_{\tau}(S, r))| \geq 2$. \square

Example 2.8. Let $X = \{x, y\}$ be a set. We define a fuzzy topology $\tau : I^X \to I$ as follows:

$$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \lambda = x_1, \\ \frac{1}{2}, & \text{if } \lambda = y_1, \\ 0, & \text{otherwise.} \end{cases}$$

For each $x_t, y_s \in Pt(X)$ such that $x \neq y$, for $0 < r \le \frac{1}{2}$, there exist $x_1 \in Q_\tau(x_t, r)$ and $y_1 \in Q_\tau(y_s, r)$ such that $x_1 \wedge y_1 = \overline{0}$. Hence (X, τ) is r- T_2 , for $0 < r \le \frac{1}{2}$. Moreover, we easily show that (X, τ) is not r- T_2 , for $r > \frac{1}{2}$.

Let N be a natural number set. Define a fuzzy net $S: N \to Pt(X)$ by

$$S(n) = \begin{cases} x_{0.4}, & \text{if } n = 2m, \\ y_{0.3}, & \text{if } n = 2m + 1, \end{cases}$$

We can show $\lim_{\tau} (S, \frac{1}{2}) = \overline{0}$ from (1) to (2).

- (1) x_t for $t \in I_0$ is not a fuzzy $\frac{1}{2}$ -limit point of S, for $x_1 \in Q_\tau(x_t, \frac{1}{2})$ and for each $n \in N$, there exists $2n + 1 \in N$ such that $2n + 1 \ge n$ and $S(2n + 1) \bar{q} x_1$.
- (2) y_s for $s \in I_0$ is not a fuzzy $\frac{1}{2}$ -limit point of S, for $y_1 \in Q_{\tau}(y_s, \frac{1}{2})$ and for each $n \in N$, there exists $2n + 1 \in N$ such that $2n + 1 \ge n$ and $S(2n) \bar{q} y_1$.

Thus, $|supp(lim_{\tau}(S, \frac{1}{2}))| = 0$. \square

Example 2.9. Let $X = \{x, y\}$ be a set. We define a fuzzy topology $\tau : I^X \to I$ as follows:

$$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \lambda = x_{0.4}, \\ 0, & \text{otherwise.} \end{cases}$$

For $x_{0.3}, y_{0.5} \in Pt(X)$, since $Q_{\tau}(x_{0.3}, r) = Q_{\tau}(y_{0.5}, r) = \{\overline{1}\}$, for each $r \in I_0$, (X, τ) is not r- T_2 .

Let N be a natural number set. Define a fuzzy net $S: N \to Pt(X)$ by

$$S(n) = x_{a_n}, \ a_n = 0.5 + (-1)^n 0.2.$$

- (1) x_t for $t \leq 0.6$ is a fuzzy r-limit point of S, for $\overline{1} \in Q_\tau(x_t, r)$ and for all $n \in N$, we have $S(n) \not = \overline{1}$.
- (2) x_t for 0.6 < t and $0 < r \le \frac{1}{2}$ is not a fuzzy r-limit point of S, for $x_{0.4} \in Q_\tau(x_t, r)$ and for each $n \in N$, there exists $2n + 1 \in N$ such that $2n + 1 \ge n$ and $S(2n + 1) = x_{0.3} \overline{q} x_{0.4}$.
- (3) y_s for $s \in I_0$ is a fuzzy r-limit point of S, for $\overline{1} \in Q_\tau(y_s, r)$ and for all $n \in N$, we have $S(n) \neq \overline{1}$.

From (1) to (3), put $\mu(x) = 0.6$ and $\mu(y) = 1$, we obtain

$$lim_{\tau}(S, r) = \begin{cases} \mu, & \text{if } 0 < r \le \frac{1}{2}, \\ \overline{1}, & \text{if } r > \frac{1}{2}. \end{cases}$$

Thus, $|supp(lim_{\tau}(S,r))| = 2$. \square

Define $\triangle_X \in I^{X \times X}$ as follows:

$$\triangle_X(x,y) = \begin{cases} 1, & \text{if } x = y, \\ 0, & \text{if } x \neq y. \end{cases}$$

Theorem 2.10. Let (X, τ) be r- T_2 . Then $C_{\tau \otimes \tau}(\triangle_X, r) = \triangle_X$ where $\tau \otimes \tau$ is a product fuzzy topology on $X \times X$.

Proof. We only show that $C_{\tau \otimes \tau}(\Delta_X, r) \leq \Delta_X$ from Theorem 1.2 (2).

Suppose $C_{\tau \otimes \tau}(\Delta_X, r) \not\leq \Delta_X$. Then there exist $(x, y) \in X \times X$ and $t \in I_0$ such that

$$C_{\tau \otimes \tau}(\Delta_X, r)(x, y) > t > \Delta_X(x, y).$$
 (1)

Since $\triangle_X(x,y) < t$. Then $x \neq y$. Since (X,τ) is r- T_2 , for $x_t, y_t \in Pt(X)$, there exist $\lambda \in Q_\tau(x_t,r)$ and $\mu \in Q_\tau(y_t,r)$ such that $\lambda \wedge \mu = \overline{0}$. Put $\rho = \pi_1^{-1}(\lambda) \wedge \pi_2^{-1}(\mu)$. Then $\tau \otimes \tau(\rho) \geq \tau(\lambda) \wedge \tau(\mu) \geq r$. Moreover, since $x_t \neq \lambda$ and $y_t \neq \mu$, we have

$$(\pi_1^{-1}(\lambda) \wedge \pi_2^{-1}(\mu))(x,y) + t = \lambda(x) \wedge \mu(y) + t > 1.$$

Thus, $\rho \in Q_{\tau \otimes \tau}((x,y)_t,r)$. Since, for all $x \in X$,

$$\rho(x,x) = (\pi_1^{-1}(\lambda) \wedge \pi_2^{-1}(\mu))(x,x) = \lambda(x) \wedge \mu(x) = 0,$$

we have $\rho \leq \overline{1} - \Delta_X$. So, $\Delta_X \leq \overline{1} - \rho$ and $\tau \otimes \tau(\rho) \geq r$ implies

$$\Delta_X \le C_{\tau \otimes \tau}(\Delta_X, r) \le \overline{1} - \rho.$$

Since $(x,y)_t q \rho$,

$$C_{\tau \otimes \tau}(\Delta_X, r)(x, y) \leq (\overline{1} - \rho)(x, y) < t.$$

It is a contradiction for the equation (1). \Box

Theorem 2.11. Let $\tau \otimes \tau$ be a product fuzzy topology on $X \times X$ of a fuzzy topological space (X,τ) . If $C_{\tau \otimes \tau}(\triangle_X, r) = \triangle_X$, then (X,τ) is $(r - \epsilon)-T_2$, for arbitrary $\epsilon > 0$.

Proof. Let $x_t, y_t \in Pt(X)$ with $x \neq y$. Since $C_{\tau \otimes \tau}(\triangle_X, r) = \triangle_X$, by the definition $C_{\tau \otimes \tau}$ of Theorem 1.2 and Definition 1.1 (O3), we have $\tau \otimes \tau(\overline{1} - \triangle_X) \geq r$. Put $\rho = \overline{1} - \triangle_X$. Then $\rho(x, y) = 1$ implies $(x, y)_t \ q \ \rho$. Let β be a base for $\tau \otimes \tau$. Since $\tau \otimes \tau(\rho) \geq r$, by Theorem 1.4, for $\epsilon > 0$, there exists a family $\{\rho_i \mid \rho = \bigvee_{i \in \Gamma} \rho_i\}$ such that

$$\tau \otimes \tau(\rho) \ge \bigwedge_{i \in \Gamma} \beta(\rho_i) > r - \epsilon.$$

Since $(x,y)_t$ q $(\rho = \bigvee_{i \in \Gamma} \rho_i)$, there exists $i \in \Gamma$ such that $(x,y)_t$ q ρ_i and $\beta(\rho_i) > r - \epsilon$. From Theorem 1.5, there exist $\lambda, \mu \in I^X$ such that

$$\rho_i = \pi_1^{-1}(\lambda) \wedge \pi_2^{-1}(\mu), \ \beta(\rho_i) \ge \tau(\lambda) \wedge \tau(\mu) \ge r - \epsilon.$$

Therefore $\tau(\lambda) \geq r - \epsilon$, $\tau(\mu) \geq r - \epsilon$. Furthermore, since $(x, y)_t \neq \rho_i$, we have

$$(x,y)_t \ q \ \pi_1^{-1}(\lambda) \Rightarrow (\pi_1^{-1}(\lambda)(x,y) = \lambda(x)) + t > 1,$$

$$(x,y)_t \ q \ \pi_2^{-1}(\mu) \Rightarrow (\pi_2^{-1}(\mu)(x,y) = \mu(y)) + t > 1.$$

Hence $\lambda \in Q_{\tau}(x_t, r - \epsilon)$ and $\mu \in Q_{\tau}(y_t, r - \epsilon)$. Moreover, for each $x \in X$,

$$(\lambda \wedge \mu)(x) = \pi_1^{-1}(\lambda) \wedge \pi_2^{-1}(\mu)(x, x)$$
$$= \rho_i(x, x) \le \rho(x, x) = 0,$$

because $\rho(x,x) = (\overline{1} - \triangle_X)(x,x) = 0$. Thus, by Theorem 2.4, (X,τ) is $(r-\epsilon)-T_2$, for arbitrary $\epsilon > 0$. \square

Example 2.12. Let $X = \{a, b\}$ and $X \times X$ be sets. We define a fuzzy topology $\tau: I^X \to I$ as follows:

$$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1} \\ \frac{3}{4}, & \text{if } \lambda = b_1, \\ \frac{1}{2}, & \text{if } \lambda = a_1, \\ 0, & \text{otherwise.} \end{cases}$$

For each $a_t, b_s \in Pt(X)$ and $0 < r \le \frac{1}{2}$, there exist $a_1 \in Q_\tau(a_t, r)$ and $b_1 \in Q_\tau(b_s, r)$ such that $a_1 \wedge b_1 = \overline{0}$. Hence (X, τ) is r- T_2 , for $0 < r \le \frac{1}{2}$.

Let β be a base of product fuzzy topological space $(X \times X, \tau \otimes \tau)$. From Theorem 1.5, since

$$(a,b)_1 = \pi_1^{-1}(a_1) \wedge \pi_2^{-1}(b_1),$$
$$\beta((a,b)_1) = \tau(a_1) \wedge \tau(b_1) = \frac{1}{2}.$$

Since

$$(b,a)_1 = \pi_2^{-1}(a_1) \wedge \pi_1^{-1}(b_1),$$
$$\beta((b,a)_1) = \tau(a_1) \wedge \tau(b_1) = \frac{1}{2}.$$

Thus,

$$\tau \otimes \tau((a,b)_1 \vee (b,a)_1) = \frac{1}{2}.$$

Since $\triangle_X = \overline{1} - (a, b)_1 \lor (b, a)_1, C_{\tau \otimes \tau}(\triangle_X, \frac{1}{2}) = \triangle_X.$

Theorem 2.13. Let $f:(X,\tau)\to (Y,\tau_1)$ and $g:(X,\tau)\to (Z,\tau_2)$ be fuzzy continuous. Define a function $h:X\to Y\times Z$ by

$$h(x) = (f(x), g(x)).$$

Then $h:(X,\tau)\to (Y\times Z,\tau_1\otimes\tau_2)$ is fuzzy continuous where $\tau_1\otimes\tau_2$ is a product fuzzy topology of (Y,τ_1) and (Z,τ_2) .

Proof. Suppose there exists $\rho \in I^{Y \times Z}$ such that

$$\tau(h^{-1}(\rho)) < \tau_1 \otimes \tau_2(\rho).$$

Let β be a base for $\tau_1 \otimes \tau_2$. By the definition of $\tau_1 \otimes \tau_2$, there exists a family $\{\rho_i \mid \rho = \bigvee_{i \in \Gamma} \rho_i\}$ such that

$$\tau(h^{-1}(\rho)) < \bigwedge_{i \in \Gamma} \beta(\rho_i) \le \tau_1 \otimes \tau_2(\rho).$$

By the definition of β of Theorem 1.5, for each $i \in \Gamma$, there exist $\lambda_i \in I^Y$ and $\mu_i \in I^Z$ with $\rho_i = \pi_1^{-1}(\lambda_i) \wedge \pi_2^{-1}(\mu_i)$ such that

$$\tau(h^{-1}(\rho)) < \bigwedge_{i \in \Gamma} (\tau_1(\lambda_i) \wedge \tau_2(\mu_i)) \le \bigwedge_{i \in \Gamma} \beta(\rho_i).$$
 (2)

On the other hand, $(\pi_1 \circ h)^{-1}(\lambda_i)(x) = \lambda_i(\pi_1(h(x))) = \lambda_i(f(x)) = f^{-1}(\lambda_i)(x)$ for all $x \in X$, similarly, $(\pi_2 \circ h)^{-1}(\mu_i) = g^{-1}(\mu_i)$. Thus, we have

$$h^{-1}(\rho_i) = h^{-1}(\pi_1^{-1}(\lambda_i) \wedge \pi_2^{-1}(\mu_i))$$

$$= h^{-1}(\pi_1^{-1}(\lambda_i)) \wedge h^{-1}(\pi_2^{-1}(\mu_i))$$

$$= (\pi_1 \circ h)^{-1}(\lambda_i) \wedge (\pi_2 \circ h)^{-1}(\mu_i)$$

$$= f^{-1}(\lambda_i) \wedge g^{-1}(\mu_i).$$

It follows

$$\tau(h^{-1}(\rho)) = \tau(h^{-1}(\bigvee_{i \in \Gamma} \rho_i))$$

$$\geq \bigwedge_{i \in \Gamma} \tau(h^{-1}(\rho_i))$$

$$= \bigwedge_{i \in \Gamma} (\tau(f^{-1}(\lambda_i) \wedge g^{-1}(\mu_i)))$$

$$\geq \bigwedge_{i \in \Gamma} (\tau(f^{-1}(\lambda_i)) \wedge \tau(g^{-1}(\mu_i)))$$

(Since f and g are fuzzy continuous,)

$$\geq \bigwedge_{i \in \Gamma} (\tau_1(\lambda_i) \wedge \tau_2(\mu_i)).$$

It is a contradiction for the equation (2). \square

Theorem 2.14. Let $f, g: (X, \tau_1) \to (Y, \tau_2)$ be fuzzy continuous. Let (Y, τ) be r- T_2 and $C_{\tau_1}(\chi_A, r) = \chi_X$ where A is a subset of X, χ_A and χ_X are characteristic functions. If f(a) = g(a) for all $a \in A$, then f(x) = g(x) for all $x \in X$.

Proof. Suppose that there exists $x \in X - A$ with $f(x) \neq g(x)$. Since (Y, τ_2) is r- T_2 , for $f(x)_1, g(x)_1 \in Pt(Y)$, there exist $\lambda \in Q_{\tau_2}(f(x)_1, r)$ and $\mu \in Q_{\tau_2}(g(x)_1, r)$ such that $\lambda \wedge \mu = \overline{0}$. Since $f(x)_1 q \lambda$ and $g(x)_1 q \mu$, we have

$$(f^{-1}(\lambda) \wedge g^{-1}(\mu))(x) > 0 \tag{3}.$$

On the other hand, let $\pi_i: Y \times Y \to Y$ be projection maps for each $i \in \{1, 2\}$ and $h: X \to Y \times Y$ defined by h(x) = (f(x), g(x)). We have

$$\lambda \wedge \mu = \overline{0}$$

$$\Rightarrow \pi_1^{-1}(\lambda) \wedge \pi_2^{-1}(\mu) \wedge \triangle_Y = \overline{0}$$

$$\Rightarrow h^{-1}(\pi_1^{-1}(\lambda) \wedge \pi_2^{-1}(\mu)) \wedge h^{-1}(\triangle_Y) = \overline{0}$$

$$\Rightarrow f^{-1}(\lambda) \wedge g^{-1}(\mu) \wedge h^{-1}(\triangle_Y) = \overline{0}$$

$$\Rightarrow h^{-1}(\triangle_Y) \leq \overline{1} - (f^{-1}(\lambda) \wedge g^{-1}(\mu)).$$

Since (Y, τ_2) is r- T_2 , by Theorem 2.10, $C_{\tau_2 \otimes \tau_2}(\triangle_Y, r) = \triangle_Y$. Since $h: (X, \tau_1) \to (Y \times Y, \tau_2 \otimes \tau_2)$ is fuzzy continuous, by Theorem 1.5(3),

$$C_{\tau_1}(h^{-1}(\triangle_Y), r) \le h^{-1}(C_{\tau_2 \otimes \tau_2}(\triangle_Y, r)) = h^{-1}(\triangle_Y).$$

Hence, by Theorem 1.2(2), $C_{\tau_1}(h^{-1}(\Delta_Y), r) = h^{-1}(\Delta_Y)$. Furthermore, Since $C_{\tau_1}(\chi_A, r) = \chi_X$ and $\chi_A \leq h^{-1}(\Delta_Y)$, we have

$$\chi_X = C_{\tau_1}(\chi_A, r) \le C_{\tau_1}(h^{-1}(\triangle_Y), r) = h^{-1}(\triangle_Y)$$

$$\le \overline{1} - (f^{-1}(\lambda) \wedge g^{-1}(\mu)).$$

Thus, $\chi_X(x) = 1$ but $\overline{1}(x) - (f^{-1}(\lambda) \wedge g^{-1}(\mu))(x) < 1$. It is a contradiction for the equation (3). \square

Theorem 2.15. If $f:(X,\tau_1)\to (Y,\tau_2)$ is fuzzy continuous and (Y,τ_2) is r- T_2 , then $C_{\tau_1\otimes\tau_2}(\chi_{G(f)},r)=\chi_{G(f)}$ where $G(f)=\{(x,y)\in X\times Y|\ y=f(x)\}.$

Proof. Let $id_Y: (Y, \tau_2) \to (Y, \tau_2)$ be an identity map. Since $f \circ \pi_1: (X \times Y, \tau_1 \otimes \tau_2) \to (Y, \tau_2)$ and $id_Y \circ \pi_2: (X \times Y, \tau_1 \otimes \tau_2) \to (Y, \tau_2)$ are fuzzy continuous, by Theorem 2.13, $f \times id_Y: (X \times Y, \tau_1 \otimes \tau_2) \to (Y \times Y, \tau_2 \otimes \tau_2)$ is fuzzy continuous. From Theorem 1.5(3), it implies

$$C_{\tau_1 \otimes \tau_2}((f \times id_Y)^{-1}(\triangle_Y), r) \le (f \times id_Y)^{-1}(C_{\tau_2 \otimes \tau_2}(\triangle_Y, r)).$$

Since (Y, τ_2) is r- T_2 , we have $C_{\tau_2 \otimes \tau_2}(\triangle_Y, r) = \triangle_Y$. By Theorem 1.3(2),

$$C_{\tau_1 \otimes \tau_2}((f \times id_Y)^{-1}(\triangle_Y), r) = (f \times id_Y)^{-1}(\triangle_Y).$$

Since $(f \times id_Y)^{-1}(\triangle_Y) = \chi_{G(f)}$, we have $C_{\tau_1 \otimes \tau_2}(\chi_{G(f)}, r) = \chi_{G(f)}$

Theorem 2.16. Every subspace of r- T_2 spaces is a r- T_2 space.

Proof. Let $(A, \tau|_A)$ be a subspace of a r- T_2 space (X, τ) . Let $a_t, b_s \in Pt(A)$ such that $a \neq b$. Then $a_t, b_s \in Pt(X)$ such that $a \neq b$. Since (X, τ) is r- T_2 , there exists $\lambda \in Q_{\tau}(a_t, r) \ \mu \in Q_{\tau}(b_s, r)$ such that $\lambda \wedge \mu = \overline{0}$. Since $\tau_A(i^{-1}(\lambda)) \geq \tau(\lambda) \geq r$ and $a_t \ q \ i^{-1}(\lambda)$, we have $i^{-1}(\lambda) \in Q_{\tau|_A}(a_t, r)$. Similarly, $i^{-1}(\mu) \in Q_{\tau|_A}(b_s, r)$. Moreover, $i^{-1}(\lambda) \wedge i^{-1}(\mu) = \overline{0}$. Hence $(A, \tau|_A)$ is r- T_2 . \square

Theorem 2.17. Let $\{(X_i, \tau_i) \mid i \in \Gamma\}$ be a family of r- T_2 spaces. Let (X, τ) be the product fuzzy topological space of $\{(X_i, \tau_i) \mid i \in \Gamma\}$. Then (X, τ) is r- T_2 .

Proof. Let $x_t, y_s \in Pt(X)$ such that $x \neq y$. Then there exists $i \in \Gamma$ such that $(\pi_i(x))_t, (\pi_i(y))_s \in Pt(X_i)$ with $\pi_i(x) \neq \pi_i(y)$. Since (X_i, τ_i) is r- T_2 , there exist $\lambda \in Q_{\tau_i}((\pi_i(x))_t, r)$ and $\mu \in Q_{\tau_i}((\pi_i(y))_s, r)$ with $\lambda \wedge \mu = \overline{0}$.

Since $\pi_i(x_t) = (\pi_i(x))_t \ q \ \lambda \ \text{iff} \ x_t \ q \ \pi_i^{-1}(\lambda)$, we have

$$\pi_i^{-1}(\lambda) \in Q_{\tau}(x_t, r).$$

Similarly, $\pi_i^{-1}(\mu) \in Q_{\tau}(y_s, r)$. Moreover, $\pi_i^{-1}(\lambda) \wedge \pi_i^{-1}(\mu) = \overline{0}$. Therefore, (X, τ) is a r- T_2 space. \square

Theorem 2.18. Let $\{(X_i, \tau_i) \mid i \in \Gamma\}$ be a family of fuzzy topological spaces. Let (X, τ) be their product fuzzy topological space. If (X, τ) is a r- T_2 space, then (X_j, τ_j) is a $(r - \epsilon)$ - T_2 space for each $\epsilon > 0$ and for each $j \in \Gamma$.

Proof. Let $(x^j)_t, (y^j)_s \in Pt(X_j)$ such that $x^j \neq y^j$. Then there exist $x^i \in X_i$ for all $i \in \Gamma - \{j\}$ such that $x \neq y \in X$ with

$$\pi_i(x) = \begin{cases} x^i, & \text{if } i \in \Gamma - \{j\}, \\ x^j, & \text{if } i = j, \end{cases} \quad \pi_i(y) = \begin{cases} x^i, & \text{if } i \in \Gamma - \{j\}, \\ y^j, & \text{if } i = j. \end{cases}$$

Since (X, τ) is r- T_2 space, there exist

$$\rho \in Q_{\tau}(x_t, r), \ \omega \in Q_{\tau}(y_s, r), \ \rho \wedge \omega = \overline{0}$$

Let β be a base for τ . Since $\tau(\rho) \geq r$ and $\tau(\omega) \geq r$, for $\epsilon > 0$, there exists two families $\{\rho_k \mid \rho = \bigvee_{k \in K} \rho_k\}$ and $\{\omega_m \mid \omega = \bigvee_{m \in M} \omega_m\}$ such that

$$\tau(\rho) \ge \bigwedge_{k \in K} \beta(\rho_k) > r - \epsilon,$$

$$\tau(\omega) \ge \bigwedge_{m \in M} \beta(\omega_m) > r - \epsilon.$$

Since $x_t \ q \ (\rho = \bigvee_{k \in K} \rho_k)$ and $y_s \ q \ (\omega = \bigvee_{m \in M} \omega_m)$, there exist $k \in K$ and $m \in M$ such that

$$x_t \ q \ \rho_k, \ \beta(\rho_k) > r - \epsilon,$$

 $y_s \ q \ \omega_m, \ \beta(\omega_m) > r - \epsilon,$
 $\rho_k \wedge \omega_m = \overline{0}.$ (4)

Then there exist two family:

 $\{\lambda_i \mid \rho_k = \bigwedge_{i \in F_1} \pi_i^{-1}(\lambda_i)\}$ and $\{\mu_l \mid \omega_m = \bigwedge_{l \in F_2} \pi_l^{-1}(\mu_l)\}$, where F_1 and F_2 are finite subsets of Γ such that

$$\beta(\rho_k) \ge \bigwedge_{i \in F_1} \tau_i(\lambda_i) > r - \epsilon,$$

$$\beta(\omega_m) \ge \bigwedge_{l \in F_2} \tau_l(\mu_l) > r - \epsilon.$$

Without loss of generality, we may assume $j \in F = F_1 = F_2$ because ,if necessary, we can take $F = F_1 \cup F_2 \cup \{j\}$ such that

$$\lambda_i = \overline{1}, \ \forall \ i \in F_2 \cup \{j\} \text{ and } \mu_l = \overline{1}, \ \forall \ l \in F_1 \cup \{j\}.$$

Hence we have

$$\beta(\rho_k) \ge \bigwedge_{i \in F} \tau_i(\lambda_i) > r - \epsilon,$$

$$\beta(\omega_m) \ge \bigwedge_{i \in F} \tau_i(\mu_i) > r - \epsilon.$$

Since $x_t q \rho_k$ and $y_s q \omega_m$, for each $j \in F$,

$$x_t \ q \ \pi_j^{-1}(\lambda_j), \ y_s \ q \ \pi_j^{-1}(\mu_j).$$

Hence

$$\lambda_j \in Q_{\tau_j}(x_t^j, r - \epsilon), \ \mu_j \in Q_{\tau_j}(y_s^j, r - \epsilon).$$

We only show that $\lambda_j \wedge \mu_j = \overline{0}$.

Suppose there exists $z^j \in X^j$ such that

$$(\lambda_j \wedge \mu_j)(z^j) > 0. (5)$$

Then there exist $x^i \in X_i$ for all $i \in \Gamma - \{j\}$ and $z \in X$ with

$$\pi_i(z) = \begin{cases} x^i, & \text{if } i \in \Gamma - \{j\}, \\ z^j, & \text{if } i = j. \end{cases}$$

Since $x_t q \rho_k$ and $y_s q \omega_m$, we have

$$t > (\bigvee_{i \in F - \{j\}} (\overline{1} - \lambda_i)(\pi_i(x))) \vee (\overline{1} - \lambda_j)(x^j)$$

$$s > (\bigvee_{i \in F - \{j\}} (\overline{1} - \mu_i)(\pi_i(x)) \vee (\overline{1} - \mu_j)(y^j).$$

It implies

$$t > \bigvee_{i \in F - \{j\}} (\overline{1} - \lambda_i)(\pi_i(x)), \tag{6}$$

$$s > \bigvee_{i \in F - \{j\}} (\overline{1} - \mu_i)(\pi_i(x)). \tag{7}$$

Moreover, from (5),

$$((\overline{1} - \lambda_j) \vee (\overline{1} - \mu_j))(z^j) < 1.$$
(8)

Hence, by (6),(7) and (8), we have

$$(\overline{1} - \rho_k)(z) = (\bigvee_{i \in F - \{j\}} (\overline{1} - \lambda_i)(x^i)) \vee (\overline{1} - \lambda_j)(z^j) < 1$$

$$(\overline{1} - \omega_m)(z) = (\bigvee_{i \in F - \{j\}} (\overline{1} - \mu_i)(x^i) \vee (\overline{1} - \mu_j)(z^j) < 1.$$

Therefore

$$(\rho_k \wedge \omega_m)(z) > 0.$$

It is a contradiction for the equation (4). Hence (X_j, τ_j) is $(r - \epsilon) - T_2$. \square

Example 2.19. Let $X = \{a\}$, $Y = \{b, c\}$ and $X \times Y = \{(a, b), (a, c)\}$ be sets. We define fuzzy topologies τ_1, τ_2 as follows:

$$\tau_1(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ 0, & \text{otherwise,} \end{cases}$$

$$\tau_2(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{3}{4}, & \text{if } \lambda = c_1, \\ \frac{1}{2}, & \text{if } \lambda = b_1, \\ 0, & \text{otherwise.} \end{cases}$$

Then (X, τ_1) is r- T_2 -space for all $r \in I_0$ and (Y, τ_2) is r- T_2 -space for all $0 < r \le \frac{1}{2}$. We obtain the product fuzzy topology $\tau_1 \times \tau_2 : I^{X \times Y} \to I$ as follows:

$$\tau_1 \otimes \tau_2(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{3}{4}, & \text{if } \lambda = (a, c)_1, \\ \frac{1}{2}, & \text{if } \lambda = (a, b)_1, \\ 0, & \text{otherwise.} \end{cases}$$

Hence $(X \times Y, \tau_1 \otimes \tau_2)$ is r- T_2 for $0 < r \le \frac{1}{2}$. \square

References

- 1. D.M. Ali, A note on some FT_2 concepts, Fuzzy sets and Systems **42** (1991), 381-386.
- 2. S.S.Benchalli and G.P.Siddapur, On level spaces of fuzzy topological spaces, Bull. of Math. Anal. Appl. 1(2) (2009), 57-65.
- 3. C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- 4. S.L. Chen and J.S.Cheng, On convergence of nets of L-fuzzy sets, J. Fuzzy Math. ${\bf 2}$ (1994), 517-524.
- 5. J.S. Cheng, On separation axioms in L- fuzzy toplogical spaces, Proceedings of Int.Conf. on Machine Learning and Cyberneties (2005), 2534-2539.
- 6. M. Demirci, Neighborhood structures in smooth topological spaces, Fuzzy sets and Systems **92** (1997), 123-128.
- 7. S. Ganguly and S.Saha, On separation axioms and T_i -fuzzy continuity, Fuzzy sets and Systems 16 (1985), 265-275.
- 8. R.N. Hazra, S.K. Samanta and K.C. Chattopadhyay, *Gradation of openness: Fuzzy topology*, Fuzzy sets and Systems **49(2)** (1992), 237-242.
- 9. U. Höhle, S. E. Rodabaugh, *Mathematics of Fuzzy Sets, Logic, Topology and Measure The*ory, The Handbooks of Fuzzy Sets Series, Volume 3, Kluwer Academic Publishers, Dordrecht (1999).
- 10. B. Hutton and I. Reilly, Separation axioms in fuzzy topological spaces, Fuzzy sets and Systems 3 (1980), 93-104.
- 11. Y.C. Kim, *Initial smooth fuzzy topological spaces*, J. of Fuzzy Logic and Intelligent Systems (in Korea) **8(3)** (1998), 88-94.
- 12. Y.C. Kim, A.A.Ramadan and M. Usama, (L,M)-topologies and (2,M)-fuzzifying topologies, International of Fuzzy Reveiw **2(2)** (2007), 129-144.
- 13. Y.C. Kim, A.A.Ramadan and M. Usama, (L,M)- Neighborhood spaces, Kangweon- Kyungli Math. Jour. 15(2) (2007), 121-133.
- 14. S. E. Rodabaugh, E. P. Klement, *Toplogical And Algebraic Structures In Fuzzy Sets*, The Handbook of Recent Developments in the Mathematics of Fuzzy Sets, , Kluwer Academic Publishers, (Boston/Dordrecht/London) (2003).
- 15. R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. **56** (1976), 621-633.
- 16. Liu Ying-Ming and Luo Mao-Kang, Fuzzy topology, World Scientific Publishing Co., Singapore, 1997.
- 17. V.L.G. Nayagam and G.Sivaraman, *Semi-Hausdorff fuzzy filters*, Int. J. of Math. and Math. Sci. (2007), 1-10.
- 18. W. Peeters, Subspaces of smooth fuzzy topologies and initial smooth fuzzy structures, Fuzzy sets and Systems 104 (1999), 423-433.
- 19. Pu Pao-Ming and Liu Ying-Ming, Fuzzy topology I; Neighborhood structure of a fuzzy point and Moore-Smith convergence, J.Math.Anal. Appl. **76** (1980), 571-599.
- 20. A. A. Ramadan, Smooth topological spaces, Fuzzy sets and Systems 48(3) (1992), 371-375.
- 21. P.V.Ramakrishnan and V.L.G. Nayagam, Nearly fuzzy Hausdorff spaces, Indian J.pure and Applied Math. **31(6)** (2000), 695-711.
- 22. A.P. Šostak, On a fuzzy topological structure, Rend. Circ. Matem. Palermo Ser.II 11 (1985), 89-103.
- 23. A.K. Singh, S.N. Lai and R. Srivastava, Separation axioms in intuitionistic fuzzy toplogical spaces, Advances in Fuzzy Systems (2012), 1-7.
- 24. R. Srivastava, On separation axioms in a newly defined fuzzy topology, Fuzzy sets and Systems 62 (1994), 341-346.