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Abstract

The goal of this paper is to introduce and study the induced proximity
on a fuzzy space due to the existence of a fuzzy proximity on another
fuzzy space. Firstly, for every two complete lattices L, M, it is defined
and studied the extension of the (L, M) -proximity on the fuzzy space

L' toan (L, M) -proximity on the fuzzy space LX; Y X and the
restriction of the (L, M )-proximity on LX to an (L, M) -proximity

on LY. Then it is obtained the relations between their closure
operators in each case (for general case and for special case when
M = 2). Secondly, it is reformulated the definition of the fuzzy

function on P(A)X, where P(A) is the lattice of the power set

of a nonempty set A. Moreover, if L£(A) denotes the family of
all complete lattices defined on A, iy : L — P(A)* is the map
ix (A)(x)={oo e L:0_ < a < A(x)}, then it is shown that every

(L, M)-basic proximity & on L*; L e £(A) induces (L, M) -basic
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proximity & on P(A)X and the map iy translates the family of
& -closed fuzzy subsets in L* into the family of the 5" -closed fuzzy
subsets in P(A)X. Thirdly, it is shown that the family of the categories
of (L, M)-fuzzy basic proximity spaces on L*; L e L(A) is
embedded in the category of (P(A), M) -fuzzy basic proximity spaces

on P(A)X.
1. Introduction

In his classical paper [34] in 1965, Zadeh introduced the fundamental
concept of fuzzy set. Goguen [10] in 1967 replaced the unit interval of real
numbers | = [0, 1] by a complete lattice L. In 1968, Chang [5] initiated the

theory of fuzzy topological spaces. Proximity has close relations with the
concepts of topology, uniformity and metric. Efremovich has introduced the
fundamental concept of the proximity space in [8]. In addition, Leader [22,
23] and Lodato [25, 26] have worked with weaker axioms than those of
Efremovich proximity space enabling them to introduce an arbitrary
topology on the underlying set. In the framework of L-topology, many
authors generalized the crisp proximity to L-fuzzy setting; some different
approaches to the concept of fuzzy proximity in the literature are introduced.
The fuzzy proximity was introduced by Katsaras in 1979 [14-16]. Artico and
Moresco in [1, 2] studied fuzzy proximity spaces, which are compatible with
Lowen fuzzy topological spaces. Markin and Sostak in [27] introduced
different concept of fuzzy proximity. They considered basic properties of
these fuzzy proximities which described how a fuzzy proximity generates a
fuzzy topology and studied the relations between their approaches and the
approaches of the fuzzy proximity introduced by Katsaras and Artico. After
then, the theory of proximity makes a massive progress (see [3, 4, 9, 11, 12,

17-19, 24, 29-33]). In [6], it was studied the (P*(L), 2)-fuzzy topology on
the fuzzy space P*(L)X, which is induced by an (L, 2)-fuzzy topological
spaces on L*, where the lattice P*(L) is defined by P*(L)={M < L:
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0. € M}. It was obtained interesting relations between the category of
(P*(L), 2)-fuzzy topology on P*(L)X and the category of the (L, 2)-fuzzy
topology on LX. This result has been a motivation to study the basic
proximity spaces on P(A)x to find out its relation with the basic proximity
spaces on X, where L is a lattice defined on a nonempty set A and P(A)
is the lattice of the power set of A. Moreover, we study the restriction of the
(L, M)-fuzzy proximity & on the fuzzy space LX to an (L, M)-fuzzy
proximity on the fuzzy space L':Y < X and conversely.
The outline of this paper is as follows: In Section 2, it is given basic

concepts and useful results which will be used in the sequel. In Section 3, it
was defined and studied the extension of the proximity on the fuzzy space

L' toa proximity on the fuzzy space LX; Y < X, the restriction of the

fuzzy proximity on X toa fuzzy proximity on L” and it was obtained the
relations between their closure operators. In Section 4, it was obtained some
relations between the lattice of the power set P(A), the family of complete

lattices £(A) on A and reformulate a suitable definition of the fuzzy

function on P(A). In Section 5, it was defined the induced basic proximity

on P*(A)X for each given basic proximity on LX; L e £(A) and obtained

a fundamental relation between their closure operators. In Section 6, it was
introduced the definition of the (L, M)-proximity. In Section 7, it was

studied the restriction and the extension of (L, M)-fuzzy proximities. In

Section 8, it was defined and studied the induced (L, M)-proximity on
P*(L)* and on P(A)X corresponding to each (L, M)-proximity on L*;
L € £(A). In Section 9, it is shown that the family of the categories of
proximities on X Le L(A) is embedded in the category of proximities on

P(A)X.
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2. Preliminaries

Let X be a given universal set and L be a given lattice. Denote by 0, and

1, the smallest element and the greatest element of L, respectively, and
denote by 0y and 1y the smallest and the greatest fuzzy subset of R
respectively. In [6], it was used the lattice of the form P*(L)={M c L
0_ € M. The algebraic structure (P*(L), U, N, ") forms a complemented,

completely distributive and complete lattice with 0 ={0_} which is

P*(L)

the smallest element and 1 = L which is the greatest element. The

P*(L)
complementary operation is defined by ': P*(L) — P*(L); where M’ =

(L-M)U{0}.

The empty P*(L)-fuzzy subset of X is denoted by 0y, where 0y (x) =

{0_ }; ¥x € X. The greatest element of P*(L)-fuzzy subset of X is denoted
by Ly, where Ly (x) =L, Vx € X.

To study the relationship between P*(L)X and LX, we defined the

mappings iy and jy as follows [6]:
@) ix : X = P*(L)* is defined as:
iy (A)(X)={LeL:0  <r<AX)VxeX, AeLX.
() jx 1 P*(L)* = LX is defined as:
ix (V)(%) = sup(V(x)), ¥x e X,V e P*(L)%.

In [6], it is proved that the two operators iy, jx form adjunction
functors and iy is the unique write adjoint of jy and jy is the unique left

adjoint of iy.

The fuzzy function on L-fuzzy subsets is studied in [6]. The fuzzy
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functions translate the fuzzy subsets LX into the fuzzy subsets KY as
follows:

Definition 2.1 [6]. Let X, Y be given nonempty sets and L, K be given

lattices. The fuzzy function F = (F, {fy},_y ) from L* into K" or simply

the fuzzy function F = (F, fy): X —> Y s defined as an ordered pair
(F, fy), where F: X —Y s a function from X to Y and f,; x e X isa
family of onto comembership functions f, : L — K; x e X satisfying the
following conditions:

(i) fx(0L) =0k and fy(1) =1k,
(if) fy is a nondecreasing function for all x € X.

The action of the fuzzy function F = (F, f,) on the L-fuzzy subsets A

of X and the inverse image of the K-fuzzy subset B of Y are defined as
follows:

E(A)(y) = {vyzp(x)fx(m» TF 2Dy and Ac LX
Ok, if EX(y)=0; '

F<(B)(x) = \/fx_l(B(F(x))); x e X and B e KY, where the supremum is

taken over the set of values f, *(B(F(x))).

The fuzzy function F = (F, f,) from LX to L' is called a uniform
fuzzy function, if f, = f; for all x € X. The ordinary functions are

embedded in the family of fuzzy functions as uniform fuzzy functions in
which f, = id is the identity function.

The concept of fuzzy topology on a set X was introduced by Chang in
1968 [5] as a collection of fuzzy subsets of 1X (where 1 =[0,1] is the

closed unit interval of real numbers) satisfying the known axioms of the
topology. This definition is extended to L-topology, where L is a complete
lattice.
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Kubiak in [20] generalized the L-topology by introducing the (L, M)-
fuzzy topology.

Definition 2.2 [20]. Let L, M be complete lattices. A mapping t: LX
— M s called an (L, M)-fuzzy topology on X if it satisfies the following
conditions:

@ t(0x) =t(1x) =1u,

(b) 1(A A B) = t(A) A 1(B) if A B e L,

©) t(viA) = Ait(A) forevery {A:iealc LX.

T is called an (L, M)-fuzzy topology, (X, L, M, 1) is called fuzzy
topological space and t(A) is called the degree of openness of A, for each
Ae X

Definition 2.3 [6]. Let F = (F, {fy} _y) be a fuzzy function from
(X,L4,M,17) to (Y,Lp,M,1y). The fuzzy function F = (F, {f,},_y)
is called -1, continuous fuzzy function if ty(F < (B)) > t,(B), for all
Bel).

Definition 2.4 [6]. The composition of the two fuzzy functions F =
(F, fy): X =Y from (X, L, M, ) to (X, Ly, M, 15) and G = (G, gy):
Y > Z from (Y, Ly, M, 15) to (Z, Lg, M, t3) is a fuzzy function, which
is denoted by G o F and it is defined as follows: G o F : (X, Ly, M, 17)
— (X, Lg, M, t3), where

(GoF)”(A)=(GoF, gr(x) © fx) (A), forevery Ae Lf.

Theorem 2.1 [6]. The composition G o F of the two continuous fuzzy
functions
F=(F f): (X, 4, M, 1) > (X, Ly, M, 1),

G =(G, gy): (X, Ly, M, 15) > (X, L3, M, 13)

is continuous fuzzy function.
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Katsaras in [14, 15] defined the proximity on 1 X asa binary relation X

on 1%, satisfying the usual conditions of proximity. This concept was

extended into L, where L is a complete lattice.

Definition 2.5 [14, 15]. A binary relation £ on LX s called proximity

on LX if = satisfies the following conditions:
(Fpl) AZB implies BZA,
(Fp2) (A v B)XZC ifand only if AXC or BXZC,
(Fp3) AZB implies A # 0y and B = 0y,

(Fp4) A A B = 0y implies AZB,

(Fp5) AZB((A, B) ¢ =) implies that there exists C e LX such that
AXC and C°ZB.

The ordered pair (X, X) is called a fuzzy proximity space.

Definition 2.6 [24, 27]. A binary relation ¥ on LX which satisfies the
axioms (Fpl), (Fp2), (Fp3) and (Fp4) is called basic proximity on LX.

Definition 2.7 [14, 15]. Let (X, X;) and (Y, Z,) be two (basic)
proximity spaces on X, L, respectively. A function F : X — Y issaid to
be a proximity mapping if for all A B e LX, Ax,B implies F7(A)Z,
F~(B). Equivalently, HX,K implies F<(H)ZF<(K), for all H, K
e LX,

Definition 2.8 [6]. Let (X, Z;) and (Y, =5) be two L-(basic) proximity
spaces. A fuzzy function F = (F, f,): X — Y s called a fuzzy proximity
mapping with respect to X£; and X, or simply a fuzzy proximity mapping if

A3;B, then F > (A)S,F(F), forall A B e L*.



122 K. A. Dib, G. A. Kamel and H. M. Rezk

Remark 2.1. Definition 2.7 is obtained from Definition 2.8, if the fuzzy
function is uniform and all its comembership functions are equal to the
identity function.

The family of (basic) proximities as objects and proximity mappings
as morphisms forms a category denoted by (BProx(L, 2))Prox(L, 2). In

[6], it was shown that the family of (basic) proximities as objects and
fuzzy proximity mappings as morphisms forms a category denoted by
(FBProx(L, 2))FProx(L, 2) and it was shown that (BProx(L,2)c

FBProx(L, 2)) and Prox(L, 2) = FProx(L, 2).

Definition 2.9. The fuzzy subset P e LX is called a fuzzy point if there
exists xg € X, such that P(x) = 0; forall x # Xy and P(xg) = A # 0.

Definition 2.10 [31]. Let X be L-basic proximity on X. The operator Cyx
on LX which is defined by: Cs(A) = V{P e LX : PSA}, where P is a fuzzy

point, is called the closed operator.

Theorem 2.2 [14]. The collection &y ={V e L* :Cx(V®)=V°} of LX
forms (L, 2)-fuzzy topology on X, which is called the induced fuzzy topology
by the proximity .

Definition 2.11 [14]. Let (X, X) be a proximity on LX and U,V e LX.
Then V is called a X -neighborhood of U if UZV°.

The family of all < -neighborhood of U is denoted by Ny (U ). Moreover,
itis clear that Cy(V) = Ny eng(v)Y-

The I-fuzzy proximity is defined on | X by [32] and it is generalized to
the L-fuzzy proximity on LX [19].

Definition 2.12 [19]. A mapping & : LX x LX — L is said to be L-fuzzy
proximity on X, which satisfied the following conditions:
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(LFP1) 8(1x, 0x ) = 8(0x, 1x) =0,
(LFP2) 8(A v u, ®) = 8(A, ®) v 8(u, ®),

(LFP3) if 5(A, u) = 1., then & < 1,

(LFP4) forany A, p € LX; then there exists pe LX such that
8 1) 2 A x (31 p) v 30", )

(LFP5) &(, ) = 8(w, A).

d is called L-fuzzy basic proximity if it satisfied (LFP1), (LFP2), (LFP3)
and (LFP5).

The pair (LX, 8) is called an L-fuzzy proximity space.

Definition 2.13 [19]. A mapping F : X — Y is called proximity map
relative to the L-fuzzy (basic) proximity &; on LX and L-fuzzy (basic)
proximity &, on LY, if for all A Be LX, the inequality S(A, B) <
81(F(A), F(B)) holds.

3. Extended and Restricted Proximities

Let L%, L' be fuzzy spaces and Y < X. In this section, it will be
discussed how to extend a given proximity on the fuzzy space L' toa
proximity on the fuzzy space LX. Conversely, it will be shown that every

basic proximity on LX induces a basic proximity on L". In this article, we
shall use the following notations.

Notations 3.1. (a) It is known that the open subset is the complement

of a closed subset. Letting A e LX, we shall use the notation AS for the
complement of A.

(b) Let X, Y be given ordinary setsand Y < X and L be a given lattice.
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If UelX, then Uy eL" denotes the restriction of U on Y Uy ()

=U(x); if xeY. Andif Ae LY, then Ary € LX denotes the extension of
Aon X : Apy(x) = A(X); xeY and Ay (X)=0p; xe X =Y.

It is clear that for every U,V LX and for every A B e L

(i) Ary ABry =(AABMy, Ay vBry =(AvBhy;ABel,
(i) Uy AVyy = (U AV)y, Uy vV = U vV) iU,V e LY,
(iii) If Alpy = Blsy, then A= B.

Theorem 3.1. Each basic proximity ¥ on L"; Y < X can be extended

to a basic proximity =* on LX as follows: for every U,V e LX s usv if

Proof.

(1) Let US'V.

-If U AV # 0y, then V AU = 0y and VZ'U.

-1f U 2V, then V| ZU . It follows that VE*U.
(2) Let (U vV)Z'W,

- If UvV)AW 20y, then UAW #0x or AW = 0y, which
means that UZ'W or VZ'W.

-1 (U vV ZW)y = Uy vV )Wy, then it follows that
U W, or V|, W, . Therefore, UZ'W or VZ'W.

(3) Let UZ'V.

-IfU AV # 0y, thenU = 0y and V = 0.
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- If UiyZVyy, then UW # 0y and Viy = 0y and consequently,
U ¢0X and V iOX.

(4) If U AV =0y, then it follows from the definition directly that
Uz*v.

Remark 3.1. If U,V e L*, then UZ'V iff U}, ="V, .

Theorem 3.2. If X is proximity on L':Y < X, then 2* is a proximity
on LX.

Proof. (a) Let US'V. Then U NV =0y and U IV, . Then there
exists C e L' for which U;yZC and C°ZV,,, where the complement C°
of the fuzzy subset C is relative to L. Therefore, US*W; and W,=*V;
where Wy, W, € L® and (Wy);y = C and (W,), = C°.

(b) Define Wj(x)=C(x); for every xeY, Wi(x)=0.; for every
x ¢ Y and define W, = W,®, where the complement W;° of the fuzzy subset
W is relative to the fuzzy space LX.

(c) Therefore, W,(x)=C%(x); xeY and Wy(x)=1; xeV.
Therefore, for US*V, there exists Wy e L* such that US*W, and WSV,

Theorem 3.3. If Cy and Cz* are the closure operators on the (basic)

proximity £ on L" and the extended basic proximity =" on R respectively,
then:

. Y
Proof. From the definition of the closure operator:

Cs(A) = v{Q e L' : QzA}, where Q is a fuzzy point of L' and
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CZ*(U) =v{P e LY : P=*U}, where P is a fuzzy point of LX. For

every fuzzy point Q e L', the fuzzy subset Qp is a fuzzy point of X, 1t

follows that if QZA, then Q+yZ*Ary and consequently, Cs(A)lry <
. Y
Let P e LX be a fuzzy point and PE*ATX:

(@) If P(xp) = Op; for some point x5 €Y, then Q =Py, is a fuzzy
point in L', 1t follows that QZA, since the negative of this relation

contradicts PE* Ay, .
(b) If P(xp) #0_ and xp € X =Y, then P A Ary =0y, Py =0y
and Py, ZA, which implies that PZ"Aq .

It follows from (a), (b) that the fuzzy point P e LX satisfies that
PZ"Aqy iff PlyZA, then Co.(Ary ) = Cx(A)l 1.

Theorem 3.4. If X is a (basic) proximity on L" and =* is the extended

(basic) proximity on LX, then from Theorem 3.3, A L' is =-closed fuzzy

subset iff Ay is >*-closed fuzzy subset.

Corollary 3.1. Let X be a (basic) proximity on L", =* be the extended
(basic) proximity on LX and Y < X. Then:

(1) The fuzzy topology 85 = {A® € L Cs(A) = A}, which is induced
by the basic fuzzy proximity £ on L', defines a family of open fuzzy subsets
{A%X e X :Cy(A) = A} = {A%X e X 1Con(Ary) = Ay} of the fuzzy

topology 82*, which is induced by the basic fuzzy proximity =* on LX.
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(2) The fuzzy subset D € L' is a ¥ -neighborhood of the fuzzy subset
B e L' iff Dyy e L isa =*-neighborhood of the fuzzy subset Byy e L*.

Theorem 3.5. Each basic proximity £ on LX defines a restricted basic

proximity =* on (or £/Y), where Y < X as follows: for every A, B € L
AZ*B if ApyZByy.

Theorem 3.6. If X is proximity on LX, then =* is a restricted proximity
on L'; where Y < X.

The following theorem gives interesting relation between the closure
operators on the basic proximity £ on LX and the restricted basic proximity

T* onY,where Y c X.
Theorem 3.7. If Cx and Cz* are the closure operators on the (basic)

proximity ¥ on LX and the restricted (basic) proximity =* on L", then the

following relations are valid: Cy(U)[ |y = Cz*(UW), Uel”.

Theorem 3.8. If X is a (basic) proximity on LX and T* is the restricted

(basic) proximity on L', then if U e LX is a =-closed fuzzy subset, then

U}y isa =" -closed fuzzy subset.

Corollary 3.2. Let ¥ be a (basic) proximity on LX and T* be the
restricted (basic) proximity on L: Y < X. Then:
(1) The fuzzy topology &5 = {U° e LX :Cx(U) = U}, which is induced

by the (basic) fuzzy proximity X on LX, defines a family of open fuzzy

subsets

(U el 1CxU) =U} = {(Ugy)° e LY :CpaUyy) = Uy}
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of the fuzzy topology 82*, which is induced by the (basic) fuzzy proximity
=* on LY.

(2) The fuzzy subset U e LX is a ¥ -neighborhood of the fuzzy subset
Ve LX iff Upy € L' isa =* -neighborhood of the fuzzy subset V|, e L.

4. The Lattice of the Power Set P(A)

Let A be a given nonempty set and P(A) be the power set of A. It is
known that (P(A), U, N, ") is a complete and completely distributive lattice
with order-reversing involution, whose minimal element OP(A) =, the

maximal element 1p,) = A and the complement of A; c A is Aj =

A=A

The definition of the fuzzy function can be reformulated for the P(A)X

as follows:

Definition 4.1. Let X, Y be given universal sets. The fuzzy function from
P(A)* into P(A)Y is a fuzzy function F =(F, f,): X —>Y; where
F : X > Y isan ordinary functionand f, : A -> A; x e X area family of

onto ordinary functions (comembership functions), which induces a family of
functions f, : P(A) > P(A); x e X (using the same notations f, for the

induced functions) satisfies the following conditions:
(i) f,(F) =3 and f,(A)=A; x e X,
(ii) clear that f, is a nondecreasing function on P(A):
fy(X) < fy(n), if L = p, where &, p e P(A); x € X.

The action of the fuzzy function F = (F, f,) onthe P(A)-fuzzy subsets
A of X and the inverse image of the P(A)-fuzzy subset B of Y are defined as

follows:
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Uy-r) Tx(AM), if F(y) =@

o yeY and AeP(A)X,
Op(a), it F(y) =2,

Fﬁ(A)(y)={

F<(B)(x) = Uf A(B(F(x))); x e X and B e P(A)".
The family of ordinary functions F : X — Y is embedded in the family
of fuzzy functions F = (F, f,): X — Y, since each ordinary function F

corresponds to the uniform fuzzy function F = (F, f, =id), where id is
the identity function.
4.1. Lattices on A

There are different partial ordered relations, each of which can be
defined on the nonempty set A, where A contains at least two elements, and
convert A into a lattice L. Denote the minimal element of L by O and the
maximal element for all these lattices is 1;. Denote by L£(A) the family of
all lattices on A. Each lattice L € £(A) is isomorphic to a sublattice of

P(A), which is defined by the correspondence ae L <> {beL;0 <b<a}
= [0, a].

In Section 2, it is defined P*(L) as the collection of subsets of L

containing its 0. If L is a lattice on A, then P*(L) < P(A); for every
L e L£(A).

It is clear that 0 ={0_} and 1 =L, while Op(y) =9 and

P*(L) P*(L)

1p(a) = A, forevery lattice L defined on A.

Example 4.1.1. Consider A ={a, b, c, d}. There are some lattices

which are defined on A. Each lattice is defined by the corresponding ordered
relation:

L:a<b<c<d, Ly:ras<b<d<c Lg:b<ac<c<d,

Ly:a<b<dandac<c<d.
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Moreover, one can show that

P*(Ly) = {{0, =a}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, ¢, d}, A}

and
P*(L3) = {{OL3 = b}, {b, a}, {b, c}, {b, d}, {b, a, c}, {b, a, d}, {b, c, d}, A}.
Theorem 4.1.1. Uy c£(5) P*(L) = P(A) - @.

Proof. Since L is a lattice on A, each subset in P*(L) is a subset of A,
containing 0. Therefore, P*(L) c P(A)-@. Consequently, ULeza) P*(L)
c P(A) - @.

On the other hand, let A € P(A)—&. Choose a e A and b e A and
a # b. Define the following order on A:a<x=<b; xe A—{a, b}. Itis

clear that the order < defines on A a lattice L and A € P*(L).

4.2. Some relations between P(A)X, LX and 2%

In [6], it is proved that the two operators iy, jx form adjunction
functors. Moreover, it shown that iy is the unique right adjoint of jy and
jx is the unique left adjoint of iy. Since P*(L)  P(A), the mappings
ix from LX into P*(L)X can be considered as an operator from L* into

P(A)x; L € L(A), using the same notation
iy 1 L% > P*(L)* < P(A),
iy (A)(X) = [0, A(X)] e P(A)*; wx e X, Ae LX.

Moreover, the function jy : P*(L)* — L* can be extended to ky :

P(A) = X, ky(V)(X) =sup(V(x)); Vxe X, V e P(A)X, where the
sup is taken over the lattice L.
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It is clear that the operator jy : P*(L)X — L* is the restriction of the
operator ky : P(A)* — L* on P*(L)%.

On the other hand, the mapping yx 2% P(A)X is defined as

follows:

A, XeM, X
foreach M € 2™ and x € X.

M=y o

And the mapping wy : P(A)X — 2% is defined as follows:

wy (V) = supp(V ) (support(V)); for each V e P(A)X.

Theorem 4.2.1. The mappings iy, kyx, xx and wy are well
defined and for all {A B, Ai;keA}c X, {M, N, My; ke A}c 2X
and {V,U,Uy; ke A} c P(A)X, the following properties are satisfied:

(i) ix (Av B) =ix (A)Uix(B) and ix (Akea Ac) = Nkeaix (A),

(ii) A< B ifandonlyif iy (A) cix(B) and V < U implies ky (V)
<ky (U),

(iii) kx (Ukea Uk)=Vieakx (Uy) and kx (V NU) <kx (V) Akx U),
(iv) kx (ix (A) = A and U c iy (kx (U)),
(V) wx (VNU) cwy (V)Nwy (U) and wy (Ugea Ui ) = vieaWx Uy ),

(vi) M < N ifandonlyif xx (M) < xx(N) and V < U implies that
wy (V) = wy (U),

(vii)
Ax (Ukea Mi) = Ukeaxx (M) and  xx (Nkea My) = Nikeaxx (M),

(viii) wx (xx(M)) =M and U < zx (wx (U)).
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Now, let E = {ix (A): Ae LX} P*(L)* = P(A)* and consider the
restriction mapping ky /E : E — L. It is clear that the restriction mapping
ky /E satisfies that

(kx /E)(ix (A)) = kx (ix (A)) = A, ix (kx /E)(ix (A))) = ix (A);
forall A e LX.

Therefore, L* is in one to one correspondence with the subfamily
E={ix(A):AeclX}c P(L)X, which means that
L* is embedded in P(A)X.

In addition, yx 1is an embedded operator, since 2X is in one
to one correspondence with the family of characteristic functions
fix(M): M e 2%} = P(A)X.

Since P(A)X and LX are two preordered sets with respect to = and <,
respectively, and iy, Ky, yx and wy are order preserving mappings, iy,

Kx, xx and wy are categorical functors.

Theorem 4.2.2. (1) The two mappings iy, kyx form adjunction functors.
Moreover, iy is the unique right adjoint of ky and ky is the unique left

adjoint of iy .

(2) The two mappings y x, Wy form adjunction functors. Moreover, y x

is the unique right adjoint of wy and wy is the unique left adjoint of y y .

Proof. (1) Notice that LX P(A)X e | POSET |, LX is closed under
arbitrary supremum operation and iy : AR P(A)X preserves order. Then,

using the adjoint functor theorems [6], iy is a functor from LX into P(A)><
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and  ky :P(A)X —LX;  where ky (V)(x) =supp(V(x)); Vxe X,

Ve P(A)x is the unique functor such that iy and ky form an adjunction
(ix "kx)-

(2) Similarly, 2%, P(A)X e | POSET |, 2% is closed under arbitrary

supremum operation and yy : 2% P(A)x preserves order. Then, using

the adjoint functor theorems [6], y x is a functor from 2% into P(A)X and

Wy P(A)* - 2% where wy (V) = supp(V); for each V e P(A)X s the

unique functor such that iy and ky form an adjunction (yyx —wy ).

Now, define the functors R, S and T from the category SET to the
category POSET as follows:

T(X)=2X, T(F: X 5> Y)=F>:2% 52",

RX)=LX,RF: X s>Y)=F": X 5L,

S(X)=P(A)X, T(F: X > Y)=(F, idy)” : P(A)X - P(A)
forall X,Y e |SET| and forall F € SET(X, Y).

Theorem 4.2.3. Let R, S and T be defined as above. Then:

(1) The mappings i :R —> S and k:S — R with components
{ix : X €|SET |} and {ky : X €|SET|} form natural transformations.

(2) The mappings ¥ :T — S and W:S —» T with components

{xx : X €|SET|} and {wy : X |SET|} form natural transformations.

5. Proximities on P(A)X, P*(L)X and LX; L € £(A)

In this section, we study some relations between the basic proximities on

LX, some induced proximities on P*(L)*; L e £(A) and P(A)*.
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Notations 5.1. In this section, we shall use the notations:

The empty L-fuzzy subset of X is denoted by 0 x), where 0 x)(x)

= 0,; Vx e X. The greatest element of L-fuzzy subset of X is denoted by
1(|_Y X ) where l(L,X)(X) =1, Vx € X.

Theorem 5.1. Each L-basic proximity = on a set LX induces P*(L)-
basic proximity =* on X which is defined as follows: for every U,V e
P*(X)X,UZ*V if: U NV 2001, x) OF 1x (U)Zix (V). where jy (V)(X)
= supp(V (x)); x € X.

Proof. (1) Let UZ™V. Then:

-IfUNV =20 then it follows that V (U = 0

(P*(L), X’ (P*(L),x) 2N

VZ'U.
- If jx(U)Zjx(V), then jx (V)Zjx (U). Therefore, it follows that
(Vz*U).

(2) Let (U UV)Z'W. Then:

-If UUV)NW =0 then it follows that U NW =0

(P*(L).X)’ (P*(L). X)

or VW =0 Therefore, UZ*W or VZ'W.

(P(L). XY
- If jx(UUV)Zjx (W), then jx(U)Zjx W) or jx(V)Zjx (W).
Consequently, UZ"W or VZ'W.

(3) Let UZ*V. Then:

-IfU NV = O(P*(L),X)' then U # O(P*(L),X) and V. # 0(p*(L),x)'

- If jx(U)Zjx(V), then jx(U) =0y x) and jx (V)= 0 x)

Consequently, U = 0 andV = 0

(P*(L), X) (P*(L), X)
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@HIFUNV =0 then jx (U)N jx (V) # 0 x) and UZ'V.

(P*(L), X)’
Corollary 5.1. If =* is P*(L)-basic proximity on P*(L)*, which is
induced by the L-basic proximity = on LX, then iy (A)=*iy (B) for every
AB; A B e LX. Since jy (ix (A)) = A and jy (ix (B)) = B.
Theorem 5.2. Let X be a proximity on LX; where Lisa complete lattice
and £* be the induced proximity by £ on P*(L)*. Then Cox(ix (A) =
iy (Cx(A)); AeLX, where Cy is the closure operator on the proximity =

on LX and C,. is the induced closure operator >*on P*(L)X.

Proof. (a) From the definition of the closure operator, we have:
Cy(ix (A)) = v{P € P*(L)* : PXMix (A)},

where P is a fuzzy point in P*(L)X :

Let Q be a fuzzy pointin L* : Q(xg) = r = 0, and Q(x) = 0,; X # Xg,
for some Xy € X. If QZA, then we have iy (Q)Z"ix (A), where iy (Q) is a
fuzzy point in P*(L)X. Hence, ix (Q) < CZ*(ix(A))- Therefore, each fuzzy
point Q € Cx(A) defines a fuzzy point iy (Q) € CZ*(ix (A)). Consequently,
Ugsa ix (Q)=C . (ix (A)) and ix (vgsa Q)= Cox(ix (A)), ie., ix (C5(A))
ch*(ix(A)).

(b) Let P e P*(L)* be a fuzzy point and P e Cz*ix(A)- Then there

exists Xy € X such that P(xo);tOP*(L), P(x)=0p*(|_); X # Xy and

PX"iy (A). Let a = vP(xy), Where the sup is taken over P(xp) c L.

Consider, the fuzzy point B e P*(L)*, where B(x) =0 X # Xg and

P*(L);

P(xg)=[0.,a]. It is clear that B > P, then PRZix(A) and
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iy (Q)Z"iy (A), where Q is a fuzzy point in L* for which Q(xy) = a.
Hence, QXA and it follows that Q; € Cx(A). Consequently, P c ix (@) <
ix (Cx(A)). Then CZ*(ix(A)) c ix (Cs(A)).

(c) From (a), (b) it follows that CZ*(ix(A)) = iy (Ce(A)); A e LX.

Theorem 5.3. Each X -closed fuzzy subset A corresponds to a £*-closed
fuzzy subset iy (A).

Corollary 5.2. Let ¥ be a basic proximity on LX and =* be the induced
basic proximity on P*(L)X. Then:

(1) The fuzzy topology 85 = {A® e LX : Cs(A) = A}, which is defined
by the basic fuzzy proximity X~ on LX, defines a family of open fuzzy subsets
fix (A e P*(L)* : CZ*(ix(A)) =iy (A)} of the fuzzy topology S, Which

is induced by the basic fuzzy proximity =* on P*(L)*.

(2) The fuzzy subset D¢ e X isa ¥ -neighborhood of the fuzzy subset
B e LX iff iy(D)° e P*(L)* is a =*-neighborhood of the fuzzy subset

iy (B) € P*(L)%.
Theorem 5.1 shows that each basic proximity X on LX induces basic
proximity " on P*(L). If A is a given set, L is a lattice defined on A and

ix is the defined function from LX to P(A)X , then we can get the following

theorems, which can be considered as extensions of Theorem 5.1 and
Theorem 5.2.

Theorem 5.4. Each L-basic proximity £ on LX; Le L(A) induces
P(A)-basic proximity =* on P(A)X which is defined by: for every
U,V e P(A)X, USYV if:

Uunv =0 or jx(U)Zjx (V), where jyx (V)(x)=suppvy; x € X.

(P*(L), X)
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Theorem 5.5. Let = be a proximity on LX; where L e £(A) is a
complete lattice and =* be the induced proximity by = on P(A)X. Then the
closure operator Cy of the proximity X on LX and the closure operator
C,a of the proximity =24 on P(A)X satisfy the relation: CZA(iX(A)) =
iy (Cx(A); Ae LX,

Theorem 5.4 and Theorem 5.5 give the following theorem.

Theorem 5.6. For every nonempty set A and for every basic proximity
> on LX; L e £(A), there exists a basic proximity =* on P(A)* such

that the family of X-closed fuzzy subsets {A} in R corresponds to a

subfamily {iy (A)} of =2-closed fuzzy subsets in P(A)X, which is defined

by the correspondence iy .

Corollary 5.3. Let X be a basic proximity on LX and =2 be the induced
basic proximity on P(A)X. Then:

(1) The fuzzy topology &y = {A® e LX Cs(A) = A}, which is defined
by the basic fuzzy proximity X~ on LX, induces a subfamily of ZA-open fuzzy
subsets: {ix (A) e P*(L)X :CZ*(iX(A))z ix (A)} of the fuzzy topology Soa
on P(A)X.

(2) The fuzzy subset AS e LX isa > -neighborhood of the fuzzy subset
B e LX if and only if ix (AF P(A)X is a £ -neighborhood of the fuzzy
subset iy (B) e P(A)X.

6. (L, M )-proximity Spaces

Let L, M be complete lattices. In [18], it was defined the L-fuzzy
proximity. In the rest of this article, we shall use the following definition
of (L, M)-proximity, in which we replace the lattice L of the degree of
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openness by a lattice M which can be chosen more suitably and simpler than
the lattice L in some cases.

Definition 6.1. A mapping &: L* x LX — M s said to be (L, M)-
proximity on X if it satisfies the following conditions:

(1) 8(1x, 0x ) =8(0x, 1x) = Opm,
(2) 3(A v 1, ®) = 3(A, ®) v (1, ®),
(3) if 8(A, n) =1, then A < p€,

(@) forany A, u e LX, then 5, p) = Aerx (804 p)v 3(p%, 1)),

(5) 8(A, p) = 8(u, 1).

& is called (L, M)-basic proximity if it satisfied the conditions (1), (2), (3)
and (5). The pair (LX, 8) is called an (L, M )-proximity space.

Definition 6.2. A mapping F : X — Y iscalled (L, M)-proximity map
relative to the (L, M)-(basic) proximity &; on L* and (L, M)-(basic)
proximity &, on LY, if for all A Be LX, the inequality &;(A, B) <
8o (F”(A), F(B)) holds.

Definition 6.3. Let § be an (L, M)-basic proximity on L. The closure

operator Cs : LX — LX is defined as follows: for every A e LX; qe Cs(A)
if and only if &(q, A)=1_ for each L-fuzzy point q of X :Cgs(A)=

vige X :8(q, A) =1}
This closure operator defines the induced fuzzy topology on X (Chang

fuzzy topology) t5 = {A® € LX Cs(A) = A}
7. Induced and Restricted (L, M )-fuzzy Proximities

Let L, L" be two families of fuzzy subsets and Y < X. In this article,
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it is discussed how to extend a given (L, M )-proximity on L' toan (L, M)-
proximity on LX or how to restrict a given (L, M)-proximity on LX to an
(L, M)-proximity on LY.

In this section, we shall use the notations which are introduced in
Section 3.

Theorem 7.1. Each (L, M)-basic proximity 3:L' xL' ->M on L';
Y = X can be extended to an (L, M )-basic proximity 8*:L* xLX — M
on L* as follows: for every U,V e LX : §*(U,V) =1y if U AV = 0y,
or 8"(U, V) =8y, Viy).
Proof.
(1) 8°(1x, 0x) = 8"(0x, 1x) = Oy,
-8"(1x, 0% ) = 8(1y, Oy ) = O and 8" (0y, 1x ) = 3(0y, 1y ) = Op.
(2) 8"(U vV, W) =8"U,W)v & (V,W).
-If UVV)AW #0y, then U AW =0y or V AW = 0y. Consequently,
§*U vV, W)=38"(U,W)vU,w).
-If (U VvV)AW =0y, then
35U VvV, W) =38(U vV)y, Wyy)=8Uyy vV, W)
=38y, Wiy ) vaUyy, Wiy ) =8"U, W) v 3 U, w).
(3)If 8°(U,V) =1y, thenU <V°,
- If 8*(U,V)=8(U¢Y,V¢Y)¢1M, then U AV =0y and consequently,
U <ve

(4) 8°(U,V)=38"(V,U).
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-IfU AV # 0y, then V AU = 0y and 8"(U, V) = 8"(V, U).

- If UAV =0y, then §°(U,V)=38Uy, V,y)=58V,y, Uy )=
8" (V, U).

It follows that if & is an (L, M )-basic proximity on LY; Y < X, then

8* isan (L, M)-fuzzy basic proximity on LX.

Theorem 7.2. If & is an (L, M)-proximity on L';Y < X, then &% is
(L, M)-proximity on L.
Proof. It is sufficient to prove that: forany U,V L*, then there exists

W e LX suchthat §*(U, V) > Ao x 87U W) v 8 WS, V).

(1) If U AV %0y, then 8°(U,V)=1y. It follows that the above

inequality is valid for every W e LX.

(2) If AV =0y, then 8°(U,V)=38Uyy,V,y). Then there exists
w e L' such that

8, V) =8y, Viy) 2 A v (BU Ly, w) v S(WE, Vi),

where the complement w° is taken in the fuzzy space L", denote by J c L'
the family of all w satisfying the above inequality.

(3) For each w € J, we define the fuzzy subset W < LX as follows:

W(x)=w(x); xeY and W(x) =0p; x ¢ Y. The family of all defined
W, for each w e L' will be denoted by 3. Itis clear that W, = w and
therefore &°(U, W) = 8(U |y, w). Moreover, W° is the complement of W
in LX which satisfies that WS(x) =w’(x); xeY, WS(x)=1, and

(W®);y = wE. It follows that 8" (W°, V) = 3(w°, V| ). Therefore,
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§°(U, V) =8}y, Viy) 2 Awes(8 (U, W) v 3 WE, V).

Consequently, 8"(U, V)=~ _ x (8"(U,W)v 8" (W®,V)), since the family
of all, which is satisfied this inequality, containing 3.

Theorem 7.3. If C5 and Cy» are the closure operators on the (L, M)-

(basic) proximity 6 on L" and the extended (L, M)-(basic) proximity 3" on
X . ) Y
L™, respectively, then CS*(ATX) =Cs5(A)|rx; Ae L.

Theorem 7.4. Each Cg-closed fuzzy subset A e L corresponds to an

X
Ca* -closed fuzzy subset Ayy € L™.

Corollary 7.1. Let 5 be a (basic) proximity on L', 8* be the extended
(basic) proximity on LX and Y < X. Then:

(1) The fuzzy topology 15 = {A® e L' : C5(A) = A}, which is induced
by the basic fuzzy proximity & on L', defines a family of open fuzzy subsets
ALy € LX 1 Cs(A) = A} = Ay € L 1 Con(Ary ) = Ary ) of the fuzzy

topology Tyes which is induced by the basic fuzzy proximity 8" on LX.

(2) The fuzzy subset D e L' is a d -neighborhood of the fuzzy subset
Beliff Dry € X isa 8" -neighborhood of the fuzzy subset Bry € X

Theorem 7.5. Each (L, M)-basic proximity & : LX x LX — M on L*
defines restricted (L, M ) -basic proximity 5* : LY xLY — M on L' (or £/Y),
where Y < X asfollows: §*(A, B) = 8(Ary, Bry )i A Bel'.

Theorem 7.6. If §: LX xLX — M is an (L, M)-proximity on L%,
then it defines 8* : L' x L' — M, which is an (L, M )-restricted proximity

on LY.
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Theorem 7.7. If C5 and Ca* are the closure operators of the (basic)

proximity & on LX and the restricted (basic) proximity &* on LY, then

the following relations are valid: [Cg(ATX)hY = C&*(A); Acl’ and
Cs(U)ly =CyUyy); U e LX.

Notice that the family of points P for which Py, =0 y) is deleted

from the above supremum, since this family does not affect the supremum.

Theorem 7.8. Each Cg-closed fuzzy subset U e LX corresponds to a

Y
Ca* -closed fuzzy subset U e L.

The following results are directly obtained.

Corollary 7.2. Let 5 be an (L, M )-(basic) proximity on LX and &* be
the restricted (L, M )-(basic) proximity on L"; Y < X. Then:

(1) The fuzzy topology 15 = {U° € LX Cs(U) = U}, which is induced
by the (L, M)-(basic) proximity & on LX, defines a family of open fuzzy
subsets {(U}y )¢ e L’ :C5(U)=U}={U, ) el 1Cye(Uyy) =Uyy ) of

the fuzzy topology t_,, which is induced by the (basic) proximity §* on L.

8* 1
(2) The fuzzy subset U e LX is a d -neighborhood of the fuzzy subset
Ve LX iff U € L' isa &* -neighborhood of the fuzzy subset V|, < L',

8. (L, M )-fuzzy Proximities on P(A)x, P*(L)X and LX; L € £(A)

In this section, we obtained some relations between the (L, M )-basic

fuzzy proximities on LX, P(L)X: L e L(A) and P(A)X. It must be
remarkable that, it is difficult to get any relationship between the (L, M)-

proximities on these fuzzy spaces in case of the absence of any relationship
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between the defined complement operations in these spaces. Due to this
situation, we replace condition (3) in Definition 6.1 by condition (3*):

(3%)if & A= O x), then 8(h, ) =1y, %, p e LK.

This condition in P*(L)* (or in P(A)*) fuzzy spaces takes the form:

(3*)ifUNV =0 then (U, V) =1y, U,V e P*L)%.

(P*(L), X)’

Theorem 8.1. Each (L, M)-basic proximity §: LX x LX — M on the
fuzzy family L* induces (P*(L), M)-basic proximity 8*: P*(L)X x P*(L)X

—> M on the fuzzy family P*(L)*, which is defined as follows:

Forevery U,V e P"‘(L)X 8T U, V) =1y, ifUNV = O(P*(L),X) and

otherwise 8*(U,V)=8(jx (U), jx (V)); where jx (V)(x) = supp(V(x));
X e X.

Proof.

1)

o (I(P*(L), X)’ O(P*(L),X)) =95 (O(P*(L), X)' l(p*(L)’ X)) = Om,

8 (), xy Opmw), x)) = x oy )b ix O )

= 8(1(L, x), O(L, x)) = Om-

Similarly, one can show that & (O(P*(L)’ XY 1(P*(|_), X)) = 0.

(2) 8" U vV, W) =8"(U,W)va(V,W):

oIf UVV)NW =0 then U NW =0 or VNW =

(P*(L). XY’ (P*(L), X)

O(P*(L),x)' It follows that 8"(U vV,W)=1y and 8 (U,W)=1, or

8"(V, W) = 1y. In this case, the equality is valid.
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o Otherwise

§'U UV, W) =3(jx (U UV), jx(W))=8(ixU)U jx V), jx (W)
=8(Jx V), IxW)) v 3(ix (V) jx W))
=38"(U, W) v & (V,W).

B)IFUNV =0 then 8*(U, V) = 1. This condition follows

(P*(L), X)’

directly from the definition &*.
(4) 8"(U,V)=8"(V,U):

eIfUNV =0 then 8" (U,V) =1y =8"(V, U).

(P*(L), X)’
o Otherwise
8, V) =8((ix (V) jx (V) = 8((ix (V). jx (V) = &(V, U).
Corollary 8.1. If 5 is (P*(L), M )-basic proximity on P*(L)*, which
is induced by the (L, M )-basic proximity & on LX, then 8" (ix (A), ix (B))
= 5(A, B), where A B e L%,

Theorem 8.2. Let 5 be an (L, M )-basic proximity on L*; where L is a
complete lattice and 8" be the induced (L, M)-basic proximity by & on
P*(L)X. Then the closure operator Cg on the proximity & on LX and the
closure operator Czs* on the induced proximity 8* on P*(L)x satisfy the

relation:
; : . X
Cyr(ix (A) = ix (C5(A)); Ae L™,
Proof. (a) From the definition of the closure operator, we have:

Cy-(ix (A) = U[P € P*(L)" : 8°(P, ix (A)) = 1y },
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where P is a fuzzy point in P*(L)X. Let Q € LX be a fuzzy point, for
which Q(xg) =r # 0. and P(x)=0p; x # X9, for some xy € X. Since

Cs(A)=v{Q e LX :8(Q, A) = 1y}, each fuzzy point Q € C5(A) defines

a fuzzy point iy (Q) € P*(L)*, satisfying that 8*(iy (Q), ix (A)) = 8(Q, A)
=1y, which means that ix(Q)eCS*(iX(A)). Therefore, Ugsa ix (Q)

c CS*(ix (A)) and ix (vgsa Q) o (ix (A)), and this means iy (Cs(A))

C (ix (R)).

(b) Let P e P*(L)* be a fuzzy point and P e Cy«(ix (A)). Then
there exists xg € X such that P(xp) = 0, and P(x) =0_; X # X9 and
8"(P,ix (A))=1y. Let a.=vP(xg), where the sup is taken over P(xg)c L.
Denote by Q, e LX the fuzzy point for which: Q;(Xy) = o and Qy(X)=0y;

X # Xo. Consider the fuzzy point B e P*(L)X, where B =iy (Q). One

can show that B, o P. Notice that

Iy =38"(P, ix (A)) = 8" (R, ix (A) = 8"(ix (1), ix (A)) = 8(Qu, A).
Therefore, the fuzzy point P e C_. (ix (A)) implies that the fuzzy point Q; e
Cs(A). Consequently, P < B =ix(Q) < ix (C5(A)). And so C..(ix (A))
< ix (C5(A)).

From (a), (b), it follows that C... (ix (A)) = ix (C5(A)); A e L.

Theorem 8.3. The mapping iy translates the family of &-closed fuzzy

subsets in L* into a subfamily of 5" -closed fuzzy subsets in P*(L)X .

Corollary 8.2. Let & be an (L, M)-basic proximity on LX and &* be

the induced (L, M )-basic proximity on P*(L)X. Then:
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(1) The fuzzy topology t5={A° e LX :Cs(A)= A}, which is defined by
the (L, M)-basic fuzzy proximity & on LX, defines a family of open fuzzy
subsets {iy (A) € P*(L)X 1Cs (ix (A))=ix (A)} of the fuzzy topology Ty
which is induced by the (L, M)-basic fuzzy proximity &* on P*(L)%.

(2) The fuzzy subset D¢ e X isa ¥ -neighborhood of the fuzzy subset
B e L iff iy (D)° e L* isa &*-neighborhood of the fuzzy subset iy (B)e
P*(L)~.

Theorem 8.4. Each (P*(L), M)-basic proximity &: P*(L)* x P*(L)*
—> M on the fuzzy family P*(L)* induces (L, M)-basic proximity &° :

LX x LX — M onthe fuzzy family LX, which is defined as follows:
for every A B e LX : 8%(A, B) = &(ix (A), ix (B)).

Theorem 8.1 shows that each (L, M)-basic fuzzy proximity & : LX x
LX — M induces (P*(L), M)-basic proximity 5 : P*(L)* x P*(L)* — M
on the fuzzy family P*(L)x. Let L be a lattice defined on a nonempty set A.
Consider iy as a function from LX to P(A)X. The following results can be
considered as extensions of Theorem 8.1 and Theorem 8.2.

Theorem 8.5. Each (L, M )-basic proximity & : X x1LX > M on LX;
L e £(A) induces (P(A), M)-basic proximity 5° : P(A)* x P(A)X — M
on P(A)*, which is defined by: 8*(U,V) =1y, if UNV = 0p(s) x)
and otherwise 5(U,V)=5(jx (U), jx (V)); where jy (V)(X)=supp(V(X));
X € X, where the supremum is taken in the lattice L.

Theorem 8.6. Let &: LX x LX — M be an (L, M)-proximity on L*;

L e £(A) is a complete lattice and & : P(A)x X P(A)X — M be the
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(P(A), M)-induced proximity on P(A)X. The closure operator on the
proximity & on LX and the closure operator 5% on P(A)X satisfy the

relation: C.x (ix (A)) = ix (Cs(A)) A e LX.

Theorem 8.7. For every nonempty set A and for every (L, M )-basic
proximity 8 on LX; L e £(A), there exists a (P(A), M )-basic proximity
5% on P(A)X such that the mapping iy translates the family of & -closed
fuzzy subsets {A} in LX into the family of 5% -closed fuzzy subsets in
P(A)X.

Corollary 8.3. Let § be an (L, M)-basic proximity on L* and §* be
the induced (P(A), M )-basic proximity on P(A)X. Then:

(1) The fuzzy topology t5 ={A° € LX :Cs(A)= A}, which is defined by
the (L, M )-basic proximity & on X, corresponds to the subfamily of open
fuzzy subsets: {ix (A)° € P(A)* :CSA(iX(A))z ix (A)} of the fuzzy topology

Tsa ON P(A)X, which is induced by the basic proximity X.

(2) The fuzzy subset A® e LX is a 4 -neighborhood of the fuzzy subset
B e LX iff iy(A)° e P(A)* is a &*-neighborhood of the fuzzy subset

iy (B) e P(A)X.

Theorem 8.8. Each (P(A), M)-basic proximity &: P(A)* x P(A)*
— M on the fuzzy family P*(L)X induces (L, M)-basic proximity 8
L x LX > M on the fuzzy family LX, which is defined as follows: for

every A, B € LX;

3°(A, B) = (ix (A), ix (B))
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9. Categories of the Proximity Spaces on

P(A)®, P*(L)* and L*; L e £(A)

Definition 9.1. Let (X, 8;) and (Y, 8,) be two (L, M )-basic proximity
spaces.

A function F : X — Y iscalled an (L, M)-proximity mapping if
81(A, B) < 5,(F(A), F(B)), VA Be LX.

Definition 9.2. Let (X, 8;) and (Y, 8,) be two (L, M )-basic proximity
spaces. A fuzzy function F = (F, f,): X —> Y is called an (L, M)-fuzzy
proximity mapping if

51(A B) < 8,(F”(A), F?(B)), VA BelLX.
The family of all (L, M)-basic proximity spaces and (L, M )-proximity
mappings from a category that will be denoted by BProx(L, M), while the
family of all (L, M)-basic proximity spaces and (L, M)-fuzzy proximity
mappings from a category that will be denoted by (FBProx(L, M)).

Moreover, the subcategory of FBProx(L, M) with (L, M )-basic proximity

spaces and fuzzy functions with identity comembership functions on L will
be denoted by idFBProx(L, M).

Lemma 9.1. (1) F € BProx(L, M)((X, &), (Y, 85)) implies
(F, id_ ) € BProx(P*(L), M)((X, &), (Y, 83)), where §*(U, V) =1y,

ifUNV =0 and otherwise (U, V) =8(jx U), jx (V)).

(P*(L), X)
(2) G = (G, id| ) € FBProx(P*(L), M)((X, &), (Y, 8,)) implies

G e BProx(L, M)((X, 80), (Y, 8%)), where 8°(A, B) = &(ix (A), ix (B)).
(38) G = (G, id| ) € FBProx(P(A), M)((X, &), (Y, 85)) implies

G e BProx(L, M)((X, &), (Y, 85)), where 8°(A, B) = &(ix (A), ix (B)).
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Theorem 9.1. The mapping iy (respectively jx) generates a functor

Ip (respectively Jp) as follows:
1)
Jp : BProx(L, M) — FBProx(P*(L), M),
where Jp(X, 8) = (X, Jp(8)), where Jp(8) = 8%, Jp(F) = (F, id|).
@)
Ip : idFBProx(P*(L), M) — BProx(L, M),
where 1p(X, 8) = (X, 1p(8)), where 1p(8) = 8°, 1p(F, id, ) = F.

Lemma 9.2. Let (X,3d)e FBProx(P*(L), M) and (X,p)e
BProx(L, M). Then we have the following:

(1) p=1pJp(p).

(2) 5 < Jplp(d).

Theorem 9.2. The functor Ip is left adjoint to the functor

Jp
Jp (Ip 4Jp), where Ip and Jp :BProx(L, M) = idFBProx(P*(L), M)
Ip

are defined in Theorem 9.1.
Proof. Let (X, 8) e idFBProx(P*(L), M), (Y, p) € BProx(L, M).
Lemma 9.2 implies that the identity fuzzy function
(idx, idp ) : (X, 8) = (X, Iplp(3))
isa (P*(L), M)-fuzzy proximity mapping. Therefore, it is sufficient to show

that for every (F, id, ) e idFBProx(P*(L), M), (X, 8), (Y, Jp(p))) there
exists a unique G e BProx(L, M)((X, 1p(8)), (Y, p)) making the following

diagram commutes:
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Jp(G)
(Y. Ip(p)) « (X, Jplp(3))

(F,id )\ (idy, id| )
(X, 8)

Let G = F, since (F, idy) isa (P*(L), M)-proximity mapping. Then
Ip(3)(A, B) = 3(ix (A). ix (B))
< Jp(p)((F, id )7 (ix (A)), (F, idL )7 (ix (B))
= Jp(p)(iy (F(A)), iy (F(B)))
= p(iv (iy (F(A), Jy (iv (F(B)) = p(F(A), F(B)).
Thus, G = F is an (L, M)-proximity mapping and is the unique function

that makes the above diagram commutes. Therefore, Ip - Jp and the functor

Ip isleft adjointto Jp.

One can show that easily the category BProx(L, M) is isomorphic to
the category idFSBProx(L, M) with the functors

Rp
BProx(L, M) = idFBProx(L, M),
Sp

where
Rp(X,8)=(X,8), Rp(F)=(F, id.),
Sp(X,8)=(X,8) and Sp(F,id; )=F.
Now, to prove that (L, M)-basic proximity spaces are embedded in
(P*(L), M)-basic proximity spaces, we define the subfamily E of P*(L) as
the range of the mapping i:L — P*(L), E = {[0, a]: o € L}. The mapping
i embeds E in P*(L). This restriction redefines the induced (E, M)-basic

proximity &* on EX of (L, M)-basic proximity & on LX as follows:
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Forevery A B e LX; §(A B) = 8"(ix (A), ix (B)).
Moreover, each (E, M )-basic proximity & : EXxEX - M on the
fuzzy family E” induces (L, M )-basic proximity % : LX x LX — M on the

fuzzy family LX, which is defined as: for every A B e LX: SO(A, B) =
3(ix (A), ix (B)).

Theorem 9.3. The category BProx(L, M) is isomorphic to the category
idFBProx(E, M) with the two functors 1p, Jp:

Jp
BProx(L, M) = idFBProx(E, M).
Ip

Theorem 9.4. The mapping iy (respectively ky) generates a functor
Ip (respectively Kp) as follows:

1)
Kp : BProx(L, M) — FBProx(P(A), M),
where Kp(X, 8) = (X, Kp(5)), where Kp(8) = 8°, Kp(F) = (F, id| ).
)
Ip : idFBProx(P*(L), M) — BProx(L, M),
where 1p(X, 8) = (X, 1p(8)), where 1p(8) = 8°, 1p(F, id, ) = F.
Lemma 9.3. Let
(X, 8) e FBProx(P(A), M) and (X, p)e BProx(L, M).
Then we have the following:
1) p = IpKp(p).

(2) 8 = Klp(3).
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Theorem 9.5. The functor 1p is left adjoint to the functor Kp

(Ip 4Kp), where Ip, Kp are defined in Theorem 9.4 and

Kp
BProx(L, M) = idFBProx(P(A), M).
Ip

From Theorem 9.3, BProx(L, M) is isomorphic to the subcategory

idFBProx(E, M) of BProx(P(A), M), moreover, the functor Kp is an

injective. Therefore, the category BProx(L, M) is embedded in the category
BProx(P(A), M), forevery L e L(A).

10. Conclusion

From the study of proximity spaces in some family of fuzzy subsets, we

can advocate that every basic proximity in the category BProx(L, M), for

every L e £(A), is isomorphic to at least one basic proximity in the category
BProx(P(A), M).
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