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Abstract 

The goal of this paper is to introduce and study the induced proximity 
on a fuzzy space due to the existence of a fuzzy proximity on another 
fuzzy space. Firstly, for every two complete lattices L, M, it is defined 
and studied the extension of the ( )ML, -proximity on the fuzzy space 

YL  to an ( )ML, -proximity on the fuzzy space ;XL  XY ⊂  and the 

restriction of the ( )ML, -proximity on XL  to an ( )ML, -proximity 

on .YL  Then it is obtained the relations between their closure 
operators in each case (for general case and for special case when 

.)2=M  Secondly, it is reformulated the definition of the fuzzy 

function on ( ) ,XP Λ  where ( )ΛP  is the lattice of the power set         

of a nonempty set .Λ  Moreover, if ( )ΛL  denotes the family of           

all complete lattices defined on ,Λ  ( )XX
X PLi Λ→:  is the map 

( ) ( ) ( ){ },0: xALxAi LX ≤α≤∈α=  then it is shown that every 

( )ML, -basic proximity δ  on ;XL  ( )Λ∈ LL  induces ( )ML, -basic 
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proximity ∗δ  on ( )XP Λ  and the map Xi  translates the family of 

δ -closed fuzzy subsets in XL  into the family of the ∗δ -closed fuzzy 

subsets in ( ) .XP Λ  Thirdly, it is shown that the family of the categories 

of ( )ML, -fuzzy basic proximity spaces on ;XL  ( )Λ∈ LL  is 

embedded in the category of ( )( )MP ,Λ -fuzzy basic proximity spaces 

on ( ) .XP Λ  

1. Introduction 

In his classical paper [34] in 1965, Zadeh introduced the fundamental 
concept of fuzzy set. Goguen [10] in 1967 replaced the unit interval of real 
numbers [ ]1,0=I  by a complete lattice L. In 1968, Chang [5] initiated the 

theory of fuzzy topological spaces. Proximity has close relations with the 
concepts of topology, uniformity and metric. Efremovich has introduced the 
fundamental concept of the proximity space in [8]. In addition, Leader [22, 
23] and Lodato [25, 26] have worked with weaker axioms than those of 
Efremovich proximity space enabling them to introduce an arbitrary 
topology on the underlying set. In the framework of L-topology, many 
authors generalized the crisp proximity to L-fuzzy setting; some different 
approaches to the concept of fuzzy proximity in the literature are introduced. 
The fuzzy proximity was introduced by Katsaras in 1979 [14-16]. Artico and 
Moresco in [1, 2] studied fuzzy proximity spaces, which are compatible with 
Lowen fuzzy topological spaces. Markin and Sostak in [27] introduced 
different concept of fuzzy proximity. They considered basic properties of 
these fuzzy proximities which described how a fuzzy proximity generates a 
fuzzy topology and studied the relations between their approaches and the 
approaches of the fuzzy proximity introduced by Katsaras and Artico. After 
then, the theory of proximity makes a massive progress (see [3, 4, 9, 11, 12, 

17-19, 24, 29-33]). In [6], it was studied the ( ( ) )2,LP∗ -fuzzy topology on 

the fuzzy space ( ) ,XLP∗  which is induced by an ( )2,L -fuzzy topological 

spaces on ,XL  where the lattice ( )LP∗  is defined by ( ) { :LMLP ⊂=∗  
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}.0 ML ∈  It was obtained interesting relations between the category of 

( ( ) )2,LP∗ -fuzzy topology on ( )XLP∗  and the category of the ( )2,L -fuzzy 

topology on .XL  This result has been a motivation to study the basic 

proximity spaces on ( )XP Λ  to find out its relation with the basic proximity 

spaces on ,XL  where L is a lattice defined on a nonempty set Λ  and ( )ΛP  

is the lattice of the power set of .Λ  Moreover, we study the restriction of the 

( )ML, -fuzzy proximity δ  on the fuzzy space XL  to an ( )ML, -fuzzy 

proximity on the fuzzy space XYLY ⊂;  and conversely. 

The outline of this paper is as follows: In Section 2, it is given basic 
concepts and useful results which will be used in the sequel. In Section 3, it 
was defined and studied the extension of the proximity on the fuzzy space 

YL  to a proximity on the fuzzy space ;XL  ,XY ⊂  the restriction of the 

fuzzy proximity on XL  to a fuzzy proximity on YL  and it was obtained the 
relations between their closure operators. In Section 4, it was obtained some 
relations between the lattice of the power set ( ),ΛP  the family of complete 

lattices ( )ΛL  on Λ  and reformulate a suitable definition of the fuzzy 

function on ( ).ΛP  In Section 5, it was defined the induced basic proximity 

on ( )XP Λ∗  for each given basic proximity on ;XL  ( )Λ∈ LL  and obtained 

a fundamental relation between their closure operators. In Section 6, it was 
introduced the definition of the ( )ML, -proximity. In Section 7, it was 

studied the restriction and the extension of ( )ML, -fuzzy proximities. In 

Section 8, it was defined and studied the induced ( )ML, -proximity on 

( )XLP∗  and on ( )XP Λ  corresponding to each ( )ML, -proximity on ;XL  

( ).Λ∈ LL  In Section 9, it is shown that the family of the categories of 

proximities on ( )Λ∈ LLLX ;  is embedded in the category of proximities on 

( ) .XP Λ  
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2. Preliminaries 

Let X be a given universal set and L be a given lattice. Denote by L0  and 

L1  the smallest element and the greatest element of L, respectively, and 

denote by X0  and X1  the smallest and the greatest fuzzy subset of ,XL  

respectively. In [6], it was used the lattice of the form ( ) { :LMLP ⊂=∗  

}.0 ML ∈  The algebraic structure ( ( ) )′∗ ,,, ∩∪LP  forms a complemented, 

completely distributive and complete lattice with ( ) { }LLP
00 =∗  which is             

the smallest element and ( ) L
LP

=∗1  which is the greatest element. The 

complementary operation is defined by ( ) ( );: LPLP ∗∗ →′  where =′M  

( ) { }.0LML ∪−  

The empty ( )LP∗ -fuzzy subset of X is denoted by ,X0  where ( ) =xX0  

{ } .;0 XxL ∈∀  The greatest element of ( )LP∗ -fuzzy subset of X is denoted 

by ,XL  where ( ) ., XxLxX ∈∀=L  

To study the relationship between ( )XLP∗  and ,XL  we defined the 

mappings Xi  and Xj  as follows [6]: 

(a) ( )XX
X LPLi ∗→:  is defined as: 

( ) ( ) ( ){ } .,;0: X
LX LAXxxALxAi ∈∈∀≤λ≤∈λ=  

(b) ( ) XX
X LLPj →∗:  is defined as: 

( ) ( ) ( )( ) ( ) .,,sup X
X LPVXxxVxVj ∗∈∈∀=  

In [6], it is proved that the two operators XX ji ,  form adjunction 

functors and Xi  is the unique write adjoint of Xj  and Xj  is the unique left 

adjoint of .Xi  

The fuzzy function on L-fuzzy subsets is studied in [6]. The fuzzy 
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functions translate the fuzzy subsets XL  into the fuzzy subsets YK  as 
follows: 

Definition 2.1 [6]. Let X, Y be given nonempty sets and L, K be given 

lattices. The fuzzy function ( { } )XxxfF ∈= ,F  from XL  into YK or simply 

the fuzzy function ( ) YXfF X →= :,F  is defined as an ordered pair 

( ),, xfF  where YXF →:  is a function from X to Y and Xxfx ∈;  is a 

family of onto comembership functions ;: KLfx →  Xx ∈  satisfying the 

following conditions: 

 (i) ( ) KLxf 00 =  and ( ) ,11 KLxf =  

(ii) xf  is a nondecreasing function for all .Xx ∈  

The action of the fuzzy function ( )xfF ,=F  on the L-fuzzy subsets A 

of X and the inverse image of the K-fuzzy subset B of Y are defined as 
follows: 

( ) ( ) ( ) ( )( ) ( )
( )⎪⎩

⎪
⎨
⎧

∈
∅=

∅≠
=

−

−
=→ Yy

yF

yFxAf
yA

K

xxFy

;if,0

,if,
1

1∨
F  and ,XLA ∈  

( ) ( ) ( )( )( );1 xFBfxB x
−← = ∨F  Xx ∈  and ,YKB ∈  where the supremum is 

taken over the set of values ( )( )( ).1 xFBfx
−  

The fuzzy function ( )xfF ,=F  from XL  to YL  is called a uniform 

fuzzy function, if ;ffx =  for all .Xx ∈  The ordinary functions are 

embedded in the family of fuzzy functions as uniform fuzzy functions in 
which Lx idf =  is the identity function. 

The concept of fuzzy topology on a set X was introduced by Chang in 

1968 [5] as a collection of fuzzy subsets of XI  (where [ ]1,0=I  is the 

closed unit interval of real numbers) satisfying the known axioms of the 
topology. This definition is extended to L-topology, where L is a complete 
lattice. 
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Kubiak in [20] generalized the L-topology by introducing the ( )ML, -

fuzzy topology. 

Definition 2.2 [20]. Let L, M be complete lattices. A mapping XL:τ  

M→  is called an ( )ML, -fuzzy topology on X if it satisfies the following 

conditions:  

(a) ( ) ( ) ,1MXX =τ=τ 10  

(b) ( ) ( ) ( )BABA τ∧τ≥∧τ  if ,, XLBA ∈  

(c) ( ) ( )iiii AA τ∧≥∨τ  for every { } .; X
i LiA ⊂α∈  

τ  is called an ( )ML, -fuzzy topology, ( )τ,,, MLX  is called fuzzy 

topological space and ( )Aτ  is called the degree of openness of A, for each 

.XLA ∈  

Definition 2.3 [6]. Let ( { } )XxxfF ∈= ,F  be a fuzzy function from 

( )11 ,,, τMLX  to ( ).,,, 22 τMLY  The fuzzy function ( { } )XxxfF ∈= ,F          

is called 21-ττ  continuous fuzzy function if ( ( )) ( ),21 BB τ≥τ ←F  for all 

.2
YLB ∈  

Definition 2.4 [6]. The composition of the two fuzzy functions =F  
( ) YXfF x →:,  from ( )11 ,,, τMLX  to ( )22 ,,, τMLX  and ( ) :, xgG=G  

ZY →  from ( )22 ,,, τMLY  to ( )33 ,,, τMLZ  is a fuzzy function, which 
is denoted by FG D  and it is defined as follows: ( )11 ,,,: τMLXFG D  

( ),,,, 33 τ→ MLX  where 

( ) ( ) ( ( ) ) ( ),, AfgFGA xxF
→→ = DDD FG  for every .1

XLA ∈  

Theorem 2.1 [6]. The composition FG D  of the two continuous fuzzy 
functions 

( ) ( ) ( ),,,,,,,:, 2211 τ→τ= MLXMLXfF xF  

( ) ( ) ( )3322 ,,,,,,:, τ→τ= MLXMLXgG xG  

is continuous fuzzy function. 
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Katsaras in [14, 15] defined the proximity on XI  as a binary relation Σ  

on ,XI  satisfying the usual conditions of proximity. This concept was 

extended into ,XL  where L is a complete lattice. 

Definition 2.5 [14, 15]. A binary relation Σ  on XL  is called proximity 

on XL  if Σ  satisfies the following conditions: 

(Fp1) BAΣ  implies ,ABΣ  

(Fp2) ( ) CBA Σ∨  if and only if CAΣ  or ,CBΣ  

(Fp3) BAΣ  implies XA 0≠  and ,XB 0≠  

(Fp4) XBA 0≠∧  implies ,BAΣ  

(Fp5) ( )( )Σ∉Σ BABA ,  implies that there exists XLC ∈  such that 

CAΣ  and .BCcΣ  

The ordered pair ( )Σ,X  is called a fuzzy proximity space. 

Definition 2.6 [24, 27]. A binary relation Σ  on XL  which satisfies the 

axioms (Fp1), (Fp2), (Fp3) and (Fp4) is called basic proximity on .XL  

Definition 2.7 [14, 15]. Let ( )1, ΣX  and ( )2, ΣY  be two (basic) 

proximity spaces on ,XL ,YL  respectively. A function YXF →:  is said to 

be a proximity mapping if for all ,, XLBA ∈  BA 1Σ  implies ( ) 2Σ
→ AF  

( ).BF→  Equivalently, KH 2Σ  implies ( ) ( ),1 KFHF ←← Σ  for all KH ,  

.XL∈  

Definition 2.8 [6]. Let ( )1, ΣX  and ( )2, ΣY  be two L-(basic) proximity 

spaces. A fuzzy function ( ) YXfF x →= :,F  is called a fuzzy proximity 

mapping with respect to 1Σ  and 2Σ  or simply a fuzzy proximity mapping if 

,1BAΣ  then ( ) ( ),2 FA →→ Σ FF  for all ., XLBA ∈  
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Remark 2.1. Definition 2.7 is obtained from Definition 2.8, if the fuzzy 
function is uniform and all its comembership functions are equal to the 
identity function. 

The family of (basic) proximities as objects and proximity mappings       
as morphisms forms a category denoted by ( )( ) ( ).,, 22 LProxLBProx  In           

[6], it was shown that the family of (basic) proximities as objects and         
fuzzy proximity mappings as morphisms forms a category denoted by 

( )( ) ( )22 ,, LFProxLFBProx  and it was shown that ( ( ) ⊂2,LBProx  

( ))2,LFBProx  and ( ) ( ).,, 22 LFProxLProx ⊂  

Definition 2.9. The fuzzy subset XLP ∈  is called a fuzzy point if there 
exists ,0 Xx ∈  such that ( ) ;0=xP  for all 0xx ≠  and ( ) .00 LxP ≠λ=  

Definition 2.10 [31]. Let Σ  be L-basic proximity on X. The operator ΣC  

on XL  which is defined by: ( ) { },: APLPAC X Σ∈=Σ ∨  where P is a fuzzy 

point, is called the closed operator. 

Theorem 2.2 [14]. The collection { ( ) }ccX VVCLV =∈=δ ΣΣ :  of XL  

forms ( )2,L -fuzzy topology on X, which is called the induced fuzzy topology 

by the proximity .Σ  

Definition 2.11 [14]. Let ( )Σ,X  be a proximity on XL  and ., XLVU ∈  

Then V is called a Σ -neighborhood of U if .cVUΣ  

The family of all Σ -neighborhood of U is denoted by ( ).UNΣ  Moreover, 

it is clear that ( ) ( ) .UVC VNU Σ∈Σ = ∩  

The I-fuzzy proximity is defined on XI  by [32] and it is generalized to 

the L-fuzzy proximity on XL  [19]. 

Definition 2.12 [19]. A mapping LLL XX →×δ :  is said to be L-fuzzy 
proximity on X, which satisfied the following conditions: 
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(LFP1) ( ) ( ) ,0,, LXXXX =δ=δ 1001  

(LFP2) ( ) ( ) ( ),,,, ωμδ∨ωλδ=ωμ∨λδ  

(LFP3) if ( ) ,1, L≠μλδ  then ,μ′≤λ  

(LFP4) for any ;, XL∈μλ  then there exists XL∈ρ  such that 

( ) ( ) ( )( ),,,, μρ′δ∨ρλδ∧≥μλδ
∈ρ XL

 

(LFP5) ( ) ( ).,, λμδ=μλδ  

δ  is called L-fuzzy basic proximity if it satisfied (LFP1), (LFP2), (LFP3) 
and (LFP5). 

The pair ( )δ,XL  is called an L-fuzzy proximity space. 

Definition 2.13 [19]. A mapping YXF →:  is called proximity map 

relative to the L-fuzzy (basic) proximity 1δ  on XL  and L-fuzzy (basic) 

proximity 2δ  on ,YL  if for all ,, XLBA ∈  the inequality ( ) ≤δ BA,  

( ( ) ( ))BFAF →→δ ,1  holds. 

3. Extended and Restricted Proximities 

Let ,XL YL  be fuzzy spaces and .XY ⊂  In this section, it will be 

discussed how to extend a given proximity on the fuzzy space YL  to a 

proximity on the fuzzy space .XL  Conversely, it will be shown that every 

basic proximity on XL  induces a basic proximity on .YL  In this article, we 
shall use the following notations. 

Notations 3.1. (a) It is known that the open subset is the complement          

of a closed subset. Letting ,XLA ∈  we shall use the notation cA  for the 
complement of A. 

(b) Let X, Y be given ordinary sets and XY ⊂  and L be a given lattice. 
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If ,XLU ∈  then Y
Y LU ∈↓  denotes the restriction of U on ( )xUY Y↓:  

( );xU=  if .Yx ∈  And if ,YLA ∈  then X
X LA ∈↑  denotes the extension of 

A on ( ) ( );: xAxAX X =↑  Yx ∈  and ( ) ;0LX xA =↑  .YXx −∈  

It is clear that for every XLVU ∈,  and for every :, YLBA ∈  

  (i) ( ) ( ) ,,;, Y
XXXXXX LBABABABABA ∈∨=∨∧=∧ ↑↑↑↑↑↑  

 (ii) ( ) ( ) ,,;, X
YYYYYX LVUVUVUVUVU ∈∨=∨∧=∧ ↓↓↓↓↓↓  

(iii) If ,XX BA ↑↑ |=|  then .BA =  

Theorem 3.1. Each basic proximity Σ  on XYLY ⊂;  can be extended 

to a basic proximity ∗Σ  on XL  as follows: for every VULVU X ∗Σ∈ :,  if 

,XVU 0≠∧  or .YY VU ↓↓ Σ  

Proof. 

(1) Let .VU ∗Σ  

- If ,XVU 0≠∧  then XUV 0≠∧  and .UV ∗Σ  

- If ,YY VU ↓↓ Σ  then .YY UV ↓↓ Σ  It follows that .UV ∗Σ  

(2) Let ( ) .WVU ∗Σ∨  

- If ( ) ,XWVU 0≠∧∨  then XWU 0≠∧  or ,XW 0≠∧  which 

means that WU ∗Σ  or .WV ∗Σ  

- If ( ) ( ) ,YYYYY WVUWVU ↓↓↓↓↓ Σ∨=Σ∨  then it follows that 

YY WU ↓↓ Σ  or .YY WV ↓↓ Σ  Therefore, WU ∗Σ  or .WV ∗Σ   

(3) Let .VU ∗Σ  

- If ,XVU 0≠∧  then XU 0≠  and .XV 0≠  
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- If ,YY VU ↓↓ Σ  then YYU 0≠↓  and YYV 0≠↓  and consequently, 

XU 0≠  and .XV 0≠  

(4) If ,XVU 0≠∧  then it follows from the definition directly that 

.VU ∗Σ  

Remark 3.1. If ,, XLVU ∈  then VU ∗Σ  iff .YY VU ↓
∗

↓ Σ  

Theorem 3.2. If Σ  is proximity on ,; XYLY ⊂  then ∗Σ  is a proximity 

on .XL  

Proof. (a) Let .VU ∗Σ  Then XVU 0=∩  and .YY VU ↓↓ Σ  Then there 

exists YLC ∈  for which CU YΣ↓  and ,Y
c VC ↓Σ  where the complement cC  

of the fuzzy subset C is relative to .YL  Therefore, 1WU ∗Σ  and ;2 VW ∗Σ  

where ,1W XLW ∈2  and ( ) CW Y =↓1  and ( ) .2
c

Y CW =↓  

(b) Define ( ) ( );1 xCxW =  for every ,Yx ∈  ( ) ;01 LxW =  for every 

Yx ∉  and define ,12
cWW =  where the complement cW1  of the fuzzy subset 

1W  is relative to the fuzzy space .XL  

(c) Therefore, ( ) ( );2 xCxW c=  Yx ∈  and ( ) ;12 LxW =  .Yx ∉  

Therefore, for ,VU ∗Σ  there exists XLW ∈1  such that 1WU ∗Σ  and .1 VW c ∗Σ  

Theorem 3.3. If ΣC  and ∗Σ
C  are the closure operators on the (basic) 

proximity Σ  on YL  and the extended basic proximity ∗Σ  on ,XL  respectively, 
then: 

( ) ( ) .; Y
XX LAACAC ∈|= ↑Σ↑Σ∗

 

Proof. From the definition of the closure operator: 

( ) { },: AQLQAC Y Σ∈∨=Σ  where Q is a fuzzy point of YL  and 
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( ) { },: UPLPUC Y ∗
Σ

Σ∈∨=∗  where P is a fuzzy point of .XL  For 

every fuzzy point ,YLQ ∈  the fuzzy subset XQ↑  is a fuzzy point of .XL  It 

follows that if ,AQΣ  then XX AQ ↑
∗

↑ Σ  and consequently, ( ) ⊂|↑Σ XAC  

( );XAC ↑Σ∗
 .YLA ∈  

Let XLP ∈  be a fuzzy point and :XAP ↑
∗Σ  

(a) If ( ) ;00 LxP ≠  for some point ,0 Yx ∈  then YPQ ↓=  is a fuzzy 

point in .YL  It follows that ,AQΣ  since the negative of this relation 

contradicts .XAP ↑
∗Σ  

(b) If ( ) LxP 00 ≠  and ,0 YXx −∈  then ,XXAP 0=∧ ↑  XYP 0=↓  

and ,AP YΣ↓  which implies that .XAP ↑
∗Σ  

It follows from (a), (b) that the fuzzy point XLP ∈  satisfies that 

XAP ↑
∗Σ  iff ,AP YΣ↓  then ( ) ( ) .XX ACAC ↑Σ↑Σ

|=∗  

Theorem 3.4. If Σ  is a (basic) proximity on YL  and ∗Σ  is the extended 

(basic) proximity on ,XL  then from Theorem 3.3, YLA ∈  is Σ -closed fuzzy 

subset iff XA↑  is ∗Σ -closed fuzzy subset. 

Corollary 3.1. Let Σ  be a (basic) proximity on ∗Σ,YL  be the extended 

(basic) proximity on XL  and .XY ⊂  Then: 

(1) The fuzzy topology { ( ) },: AACLA Yc =∈=δ ΣΣ  which is induced 

by the basic fuzzy proximity Σ  on ,YL  defines a family of open fuzzy subsets 

{ ( ) } { ( ) }XX
Xc

X
Xc

X AACLAAACLA ↑↑Σ↑Σ↑
=∈==∈ ∗::  of the fuzzy 

topology ,∗Σδ  which is induced by the basic fuzzy proximity ∗Σ  on .XL  
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(2) The fuzzy subset YLD ∈  is a Σ -neighborhood of the fuzzy subset 
YLB ∈  iff X

X LD ∈↑  is a ∗Σ -neighborhood of the fuzzy subset .X
X LB ∈↑  

Theorem 3.5. Each basic proximity Σ  on XL  defines a restricted basic 

proximity �Σ  on ( ),Yor Σ  where XY ⊂  as follows: for every :, YLBA ∈  

BA �Σ  if .XX BA ↑↑ Σ  

Theorem 3.6. If Σ  is proximity on ,XL  then �Σ  is a restricted proximity 

on ;YL  where .XY ⊂  

The following theorem gives interesting relation between the closure 

operators on the basic proximity Σ  on XL  and the restricted basic proximity 
�Σ  on Y, where .XY ⊂  

Theorem 3.7. If ΣC  and �Σ
C  are the closure operators on the (basic) 

proximity Σ  on XL  and the restricted (basic) proximity �Σ  on ,YL  then the 

following relations are valid: ( ) ( ) .; X
YY LUUCUC ∈=| ↓Σ↓Σ �  

Theorem 3.8. If Σ  is a (basic) proximity on XL  and �Σ  is the restricted 

(basic) proximity on ,YL  then if XLU ∈  is a Σ -closed fuzzy subset, then 

YU↓  is a �Σ -closed fuzzy subset. 

Corollary 3.2. Let Σ  be a (basic) proximity on XL  and �Σ  be the 

restricted (basic) proximity on .; XYLY ⊂  Then:  

(1) The fuzzy topology { ( ) },: UUCLU Xc =∈=δ ΣΣ  which is induced 

by the (basic) fuzzy proximity Σ  on ,XL  defines a family of open fuzzy 

subsets 

{( ) ( ) } {( ) ( ) }YY
Yc

Y
Yc

Y UUCLUUUCLU ↓↓Σ↓Σ↓ =∈==∈ �::  



K. A. Dib, G. A. Kamel and H. M. Rezk 128 

of the fuzzy topology ,�Σδ  which is induced by the (basic) fuzzy proximity 

�Σ  on .YL  

(2) The fuzzy subset XLU ∈  is a Σ -neighborhood of the fuzzy subset 
XLV ∈  iff Y

Y LU ∈↓  is a �Σ -neighborhood of the fuzzy subset .Y
Y LV ∈↓  

4. The Lattice of the Power Set ( )ΛP  

Let Λ  be a given nonempty set and ( )ΛP  be the power set of .Λ  It is 

known that ( )( )′Λ ,,, ∩∪P  is a complete and completely distributive lattice 

with order-reversing involution, whose minimal element ( ) ,0 ∅=ΛP  the 

maximal element ( ) Λ=ΛP1  and the complement of Λ⊂Λ1  is =Λ′1  

.1Λ−Λ  

The definition of the fuzzy function can be reformulated for the ( )XP Λ  

as follows: 

Definition 4.1. Let X, Y be given universal sets. The fuzzy function from 

( )XP Λ  into ( )YP Λ  is a fuzzy function ( ) ;:, YXfF x →=F  where 

YXF →:  is an ordinary function and ;: Λ→Λxf  Xx ∈  are a family of 

onto ordinary functions (comembership functions), which induces a family of 
functions ( ) ( );: Λ→Λ PPfx  Xx ∈  (using the same notations xf  for the 

induced functions) satisfies the following conditions: 

 (i) ( ) ∅=∅xf  and ( ) ,; Xxfx ∈Λ=Λ  

(ii) clear that xf  is a nondecreasing function on ( ):ΛP  

( ) ( ),μ⊂λ xx ff  if ,μ⊂λ  where ( ) .;, XxP ∈Λ∈μλ  

The action of the fuzzy function ( )xfF ,=F  on the ( )ΛP -fuzzy subsets 

A of X and the inverse image of the ( )ΛP -fuzzy subset B of Y are defined as 

follows: 
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( )( ) ( ) ( )( ) ( )

( ) ( )⎪⎩

⎪
⎨
⎧

∅=

∅≠
= −

Λ

−
=→

;if0

if,
1

,

1

yF

yFxAf
yA

P

xxFy∪F  Yy ∈  and ( ) ,XPA Λ∈  

( ) ( ) ( )( )( );1 xFBfxB x
−← = ∪F  Xx ∈  and ( ) .YPB Λ∈  

The family of ordinary functions YXF →:  is embedded in the family 
of fuzzy functions ( ) ,:, YXfF x →=F  since each ordinary function F 

corresponds to the uniform fuzzy function ( ),, idfF x ==F  where id is 

the identity function. 

4.1. Lattices on Λ  

There are different partial ordered relations, each of which can be 
defined on the nonempty set ,Λ  where Λ  contains at least two elements, and 

convert Λ  into a lattice L. Denote the minimal element of L by L0  and the 

maximal element for all these lattices is .1L  Denote by ( )ΛL  the family of 

all lattices on .Λ  Each lattice ( )Λ∈ LL  is isomorphic to a sublattice of 

( ),ΛP  which is defined by the correspondence { }abLbLa L ≤≤∈↔∈ 0;  

[ ].,0 aL=  

In Section 2, it is defined ( )LP∗  as the collection of subsets of L 

containing its .0L  If L is a lattice on ,Λ  then ( ) ( );Λ⊂∗ PLP  for every 

( ).Λ∈ LL  

It is clear that ( ) { }LLP
00 =∗  and ( ) ,1 L

LP
=∗  while ( ) ∅=ΛP0  and 

( ) ,1 Λ=ΛP  for every lattice L defined on .Λ  

Example 4.1.1. Consider { }.,,, dcba=Λ  There are some lattices 

which are defined on .Λ  Each lattice is defined by the corresponding ordered 
relation: 

,:,:,: 321 dcabLcdbaLdcbaL ≤≤≤≤≤≤≤≤≤  

dbaL ≤≤:4  and .dca ≤≤  
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Moreover, one can show that 

( ) {{ } { } { } { } { } { } { } }Λ==∗ ,,,,,,,,,,,,,,,,0 11 dcadbacbadacabaaLP L  

and  

( ) {{ } { } { } { } { } { } { } }.,,,,,,,,,,,,,,,,0 33 Λ==∗ dcbdabcabdbcbabbLP L  

Theorem 4.1.1. ( ) ( ) ( ) .∅−Λ=∗
Λ∈ PLPLL∪  

Proof. Since L is a lattice on ,Λ  each subset in ( )LP∗  is a subset of Λ, 

containing .0L  Therefore, ( ) ( ) .∅−Λ⊂∗ PLP  Consequently, ( ) ( )LP∗
Λ∈LL∪  

( ) .∅−Λ⊂ P  

On the other hand, let ( ) .∅−Λ∈ PA  Choose Aa ∈  and Λ∈b  and 

.ba ≠  Define the following order on ;: bxa ≺≺Λ  { }., bax −Λ∈  It is 

clear that the order  defines on Λ  a lattice L and ( ).LPA ∗∈  

4.2. Some relations between ( ) XX LP ,Λ  and X2  

In [6], it is proved that the two operators ,Xi Xj  form adjunction 

functors. Moreover, it shown that Xi  is the unique right adjoint of Xj  and 

Xj  is the unique left adjoint of .Xi  Since ( ) ( ),Λ⊂∗ PLP  the mappings     

Xi  from XL  into ( )XLP∗  can be considered as an operator from XL  into 

( ) ;XP Λ  ( ),Λ∈ LL  using the same notation 

( ) ( ) ,: XXX
X PLPLi Λ⊂→ ∗  

( ) ( ) ( )[ ] ( ) .,;,0 XX
LX LAXxPxAxAi ∈∈∀Λ∈=  

Moreover, the function ( ) XX
X LLPj →∗:  can be extended to :Xk  

( ) ,XX LP →Λ  ( ) ( ) ( )( );sup xVxVkX =  ,Xx ∈∀  ( ) ,XPV Λ∈  where the 

sup is taken over the lattice L. 
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It is clear that the operator ( ) XX
X LLPj →∗:  is the restriction of the 

operator ( ) XX
X LPk →Λ:  on ( ) .XLP∗  

On the other hand, the mapping ( )XX
X P Λ→χ 2:  is defined as 

follows: 

( ) ( )
( )⎩

⎨
⎧

∉
∈Λ

=χ
Λ ;,0

,,
Mx
Mx

xM
P

M  for each XM 2∈  and .Xx ∈  

And the mapping ( ) XX
X Pw 2: →Λ  is defined as follows: 

( ) ( ) ( )( );supportsupp VVVwX =  for each ( ) .XPV Λ∈  

Theorem 4.2.1. The mappings ,Xi  ,Xk  Xχ  and Xw  are well        

defined and for all { } ,;,, X
k LkABA ⊂Δ∈  { } X

k kMNM 2;,, ⊂Δ∈  

and { } ( ) ,;,, X
k PkUUV Λ⊂Δ∈  the following properties are satisfied: 

    (i) ( ) ( ) ( )BiAiBAi XXX ∪=∨  and ( ) ( ),kXkkkX AiAi Δ∈Δ∈ =∧ ∩  

   (ii) BA ≤  if and only if ( ) ( )BiAi XX ⊂  and UV ⊂  implies ( )VkX  

( ),UkX≤  

  (iii) ( ) ( )kXkkkX UkUk Δ∈Δ∈ ∨=∪  and ( ) ( ) ( ),UkVkUVk XXX ∧≤∩  

  (iv) ( )( ) AAik XX =  and ( )( ),UkiU XX⊂  

   (v) ( ) ( ) ( )UwVwUVw XXX ∩∩ ⊂  and ( ) ( ),kXkkkX UwUw Δ∈Δ∈ ∨=∪  

  (vi) NM ⊂  if and only if ( ) ( )NM XX χ⊂χ  and UV ⊂  implies that 

( ) ( ),UwVw XX ⊂  

 (vii) 

( ) ( )kXkkkX MM χ=χ Δ∈Δ∈ ∪∪    and   ( ) ( ),kXkkkX MM χ=χ Δ∈Δ∈ ∩∩  

(viii) ( )( ) MMw XX =χ  and ( )( ).UwU XXχ⊂  
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Now, let { ( ) } ( ) ( )XXX
X PLPLAAiE Λ⊂⊂∈= ∗:  and consider the 

restriction mapping .: X
X LEEk →  It is clear that the restriction mapping 

EkX  satisfies that 

 ( ) ( )( ) ( )( ) ( ) ( )( )( ) ( );, AiAiEkiAAikAiEk XXXXXXXX ===  

 for all .XLA ∈  

Therefore, XL  is in one to one correspondence with the subfamily 

{ ( ) } ( ) ,: XX
X LPLAAiE ⊂∈=  which means that 

XL  is embedded in ( ) .XP Λ  

In addition, Xχ  is an embedded operator, since X2  is in one                    

to one correspondence with the family of characteristic functions 

{ ( ) } ( ) .2: XX
X PMM Λ⊂∈χ  

Since ( )XP Λ  and XL  are two preordered sets with respect to ⊂  and ,≤  

respectively, and ,Xi  ,Xk  Xχ  and Xw  are order preserving mappings, ,Xi  

,Xk  Xχ  and Xw  are categorical functors. 

Theorem 4.2.2. (1) The two mappings XX ki ,  form adjunction functors. 

Moreover, Xi  is the unique right adjoint of Xk  and Xk  is the unique left 

adjoint of .Xi  

(2) The two mappings XX w,χ  form adjunction functors. Moreover, Xχ  

is the unique right adjoint of Xw  and Xw  is the unique left adjoint of .Xχ  

Proof. (1) Notice that ,XL  ( ) ,POSET∈Λ XP  XL  is closed under 

arbitrary supremum operation and ( )XX
X PLi Λ→:  preserves order. Then, 

using the adjoint functor theorems [6], Xi  is a functor from XL  into ( )XP Λ  
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and ( ) ;: XX
X LPk →Λ  where ( ) ( ) ( )( );supp xVxVkX =  ,Xx∈∀  

( )XPV Λ∈  is the unique functor such that Xi  and Xk  form an adjunction 

( ).XX ki E  

(2) Similarly, ,2X  ( ) ,POSET∈Λ XP  X2  is closed under arbitrary 

supremum operation and ( )XX
X P Λ→χ 2:  preserves order. Then, using 

the adjoint functor theorems [6], Xχ  is a functor from X2  into ( )XP Λ  and 

( ) ;2: XX
X Pw →Λ  where ( ) ( );supp VVwX =  for each ( )XPV Λ∈  is the 

unique functor such that Xi  and Xk  form an adjunction ( ).XX wEχ  

Now, define the functors R, S and T from the category SET to the 
category POSET as follows: 

( ) ( ) ,22::,2 YXX FYXFX →=→= →TT  

( ) ( ) ,::, YX
L

X LLFYXLX →=→= →FRR  

( ) ( ) ( ) ( ) ( ) ( )YXX PPidFYXPX Λ→Λ=→Λ= →
Λ :,:, FTS  

for all SET∈YX ,  and for all ( )., YXF SET∈  

Theorem 4.2.3. Let R, S and T be defined as above. Then: 

(1) The mappings SR →:i  and RS →:k  with components 
{ }SET∈XiX :  and { }SET∈XkX :  form natural transformations. 

(2) The mappings ST →χ :  and TS →:w  with components 

{ }SET∈χ XX :  and { }SET∈XwX :  form natural transformations. 

5. Proximities on ( ) ( )XX LPP ∗Λ ,  and ( )Λ∈ LLLX ;  

In this section, we study some relations between the basic proximities on 

,XL  some induced proximities on ( ) ( )Λ∈∗ LLLP X ;  and ( ) .XP Λ  
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Notations 5.1. In this section, we shall use the notations: 

The empty L-fuzzy subset of X is denoted by ( ),, XL0  where ( )( )xXL,0  

;0L=  .Xx ∈∀  The greatest element of L-fuzzy subset of X is denoted by 

( ),, XL1  where ( )( ) .,1, Xxx LXL ∈∀=1  

Theorem 5.1. Each L-basic proximity Σ  on a set XL  induces ( )LP∗ -

basic proximity ∗Σ  on X which is defined as follows: for every ∈VU ,  

( ) VUXP X ∗∗ Σ,  if: ( ( ) )XLP
VU

,∗≠ 0∩  or ( ) ( ),VjUj XX Σ  where ( )( )xVjX  

( )( ) .;supp XxxV ∈=  

Proof. (1) Let .VU ∗Σ  Then: 

- If ( ( ) ),, XLP
VU ∗≠ 0∩  then it follows that ( ( ) )XLP

UV
,∗≠ 0∩  and 

.UV ∗Σ  

- If ( ) ( ),VjUj XX Σ  then ( ) ( ).UjVj XX Σ  Therefore, it follows that 

( ).UV ∗Σ  

(2) Let ( ) .WVU ∗Σ∪  Then: 

- If ( ) ( ( ) ),, XLP
WVU ∗≠ 0∩∪  then it follows that ( ( ) )XLP

WU
,∗≠ 0∩  

or ( ( ) )., XLP
WV ∗≠ 0∩  Therefore, WU ∗Σ  or .WV ∗Σ  

- If ( ) ( ),WjVUj XX Σ∪  then ( ) ( )WjUj XX Σ  or ( ) ( ).WjVj XX Σ  

Consequently, WU ∗Σ  or .WV ∗Σ  

(3) Let .VU ∗Σ  Then: 

- If ( ( ) ),, XLP
VU ∗≠ 0∩  then ( ( ) )XLP

U
,∗≠ 0  and ( ( ) )., XLP

V ∗≠ 0  

- If ( ) ( ),VjUj XX Σ  then ( ) ( )XLX Uj ,0≠  and ( ) ( )., XLX Vj 0≠  

Consequently, ( ( ) )XLP
U

,∗≠ 0  and ( ( ) )., XLP
V ∗≠ 0  
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(4) If ( ( ) ),, XLP
VU ∗≠ 0∩  then ( ) ( ) ( )XLXX VjUj ,0≠∩  and .VU ∗Σ  

Corollary 5.1. If ∗Σ  is ( )LP∗ -basic proximity on ( ) ,XLP∗  which is 

induced by the L-basic proximity Σ  on ,XL  then ( ) ( )BiAi XX
∗Σ  for every 

.,; XLBABA ∈Σ  Since ( )( ) AAij XX =  and ( )( ) .BBij XX =  

Theorem 5.2. Let Σ  be a proximity on ;XL  where L is a complete lattice 

and ∗Σ  be the induced proximity by Σ  on ( ) .XLP∗  Then ( )( ) =∗Σ
AiC X  

( )( );ACiX Σ  ,XLA ∈  where ΣC  is the closure operator on the proximity Σ  

on XL  and ∗Σ
C  is the induced closure operator ∗Σ  on ( ) .XLP∗  

Proof. (a) From the definition of the closure operator, we have: 

( )( ) { ( ) ( )},: AiPLPPAiC X
X

X
∗∗

Σ
Σ∈∨=∗  

where P is a fuzzy point in ( ) .XLP∗  

Let Q be a fuzzy point in ( ) L
X rxQL 0: 0 ≠=  and ( ) ,;0 0xxxQ L ≠=  

for some .0 Xx ∈  If ,AQΣ  then we have ( ) ( ),AiQi XX
∗Σ  where ( )QiX  is a 

fuzzy point in ( ) .XLP∗  Hence, ( ) ( )( ).AiCQi XX ∗Σ
⊂  Therefore, each fuzzy 

point ( )ACQ Σ∈  defines a fuzzy point ( ) ( )( ).AiCQi XX ∗Σ
∈  Consequently, 

( ) ( )( )AiCQi XXAQ ∗ΣΣ ⊂∪  and ( ) ( )( ),AiCQi XAQX ∗ΣΣ ⊂∨  i.e., ( )( )ACiX Σ  

( )( ).AiC X∗Σ
⊂  

(b) Let ( )XLPP ∗∈  be a fuzzy point and ( ).AiCP X∗Σ
∈  Then there 

exists Xx ∈0  such that ( ) ( ),00 LP
xP ∗≠  ( ) ( );0

LP
xP ∗=  0xx ≠  and 

( ).AiP X
∗Σ  Let ( ),0xP∨=α  where the sup is taken over ( ) .0 LxP ⊂  

Consider, the fuzzy point ( ) ,1
XLPP ∗∈  where ( ) ( );01 LP

xP ∗=  0xx ≠  and 

( ) [ ].,001 α= LxP  It is clear that ,1 PP ⊃  then ( )AiP X
∗Σ1  and 
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( ) ( ),1 AiQi XX
∗Σ  where 1Q  is a fuzzy point in XL  for which ( ) .01 α=xQ  

Hence, AQ Σ1  and it follows that ( ).1 ACQ Σ∈  Consequently, ( ) ⊂⊂ 1QiP X  

( )( ).ACiX Σ  Then ( )( ) ( )( ).ACiAiC XX ΣΣ
⊂∗  

(c) From (a), (b) it follows that ( )( ) ( )( ) .; X
XX LAACiAiC ∈= ΣΣ∗

 

Theorem 5.3. Each Σ -closed fuzzy subset A corresponds to a ∗Σ -closed 
fuzzy subset ( ).AiX  

Corollary 5.2. Let Σ  be a basic proximity on XL  and ∗Σ  be the induced 

basic proximity on ( ) .XLP∗  Then: 

(1) The fuzzy topology { ( ) },: AACLA Xc =∈=δ ΣΣ  which is defined 

by the basic fuzzy proximity Σ  on ,XL  defines a family of open fuzzy subsets 

{ ( ) ( ) ( )( ) ( )}AiAiCLPAi XX
Xc

X =∈ ∗Σ
∗ :  of the fuzzy topology ,∗Σδ  which 

is induced by the basic fuzzy proximity ∗Σ  on ( ) .XLP∗  

(2) The fuzzy subset Xc LD ∈  is a Σ -neighborhood of the fuzzy subset 
XLB ∈  iff ( ) ( )Xc

X LPDi ∗∈  is a ∗Σ -neighborhood of the fuzzy subset 

( ) ( ) .X
X LPBi ∗∈  

Theorem 5.1 shows that each basic proximity Σ  on XL  induces basic 

proximity ∗Σ  on ( ).LP∗  If Λ  is a given set, L is a lattice defined on Λ  and 

Xi  is the defined function from XL  to ( ) ,XP Λ  then we can get the following 

theorems, which can be considered as extensions of Theorem 5.1 and 
Theorem 5.2. 

Theorem 5.4. Each L-basic proximity Σ  on ;XL  ( )Λ∈ LL  induces 

( )ΛP -basic proximity ΔΣ  on ( )XP Λ  which is defined by: for every 

( ) VUPVU X ∗ΣΛ∈ ,,  if: 

( ( ) )XLP
VU

,∗≠ 0∩  or ( ) ( ),VjUj XX Σ  where ( )( ) .;supp XxvxVj xX ∈=  
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Theorem 5.5. Let Σ  be a proximity on ;XL  where ( )Λ∈ LL  is a 

complete lattice and ΔΣ  be the induced proximity by Σ  on ( ) .XP Λ  Then the 

closure operator ΣC  of the proximity Σ  on XL  and the closure operator 

ΔΣ
C  of the proximity ΔΣ  on ( )XP Λ  satisfy the relation: ( )( ) =ΔΣ

AiC X  

( )( ) .; X
X LAACi ∈Σ  

Theorem 5.4 and Theorem 5.5 give the following theorem. 

Theorem 5.6. For every nonempty set Λ  and for every basic proximity 

Σ  on ;XL  ( ),Λ∈ LL  there exists a basic proximity ΔΣ  on ( )XP Λ  such 

that the family of Σ -closed fuzzy subsets { }A  in XL  corresponds to a 

subfamily ( ){ }AiX  of ΔΣ -closed fuzzy subsets in ( ) ,XP Λ  which is defined 

by the correspondence .Xi  

Corollary 5.3. Let Σ  be a basic proximity on XL  and ΔΣ  be the induced 

basic proximity on ( ) .XP Λ  Then: 

(1) The fuzzy topology { ( ) },: AACLA Xc =∈=δ ΣΣ  which is defined 

by the basic fuzzy proximity Σ  on ,XL  induces a subfamily of ΔΣ -open fuzzy 

subsets: { ( ) ( ) ( )( ) ( )}AiAiCLPAi XX
Xc

X =∈ ∗Σ
∗ :  of the fuzzy topology ΔΣ

δ  

on ( ) .XP Λ  

(2) The fuzzy subset Xc LA ∈  is a Σ -neighborhood of the fuzzy subset 
XLB ∈  if and only if ( ) ( )Xc

X PAi Λ∈  is a ΔΣ -neighborhood of the fuzzy 

subset ( ) ( ) .X
X PBi Λ∈  

6. ( )ML, -proximity Spaces 

Let L, M be complete lattices. In [18], it was defined the L-fuzzy 
proximity. In the rest of this article, we shall use the following definition                
of ( )ML, -proximity, in which we replace the lattice L of the degree of 
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openness by a lattice M which can be chosen more suitably and simpler than 
the lattice L in some cases. 

Definition 6.1. A mapping MLL XX →×δ :  is said to be ( )ML, -

proximity on X if it satisfies the following conditions: 

(1) ( ) ( ) ,0,, M=δ=δ XXXX 1001  

(2) ( ) ( ) ( ),,,, ωμδ∨ωλδ=ωμ∨λδ  

(3) if ( ) ,1, ≠μλδ  then ,cμ≤λ  

(4) for any ,, XL∈μλ  then ( ) ( ( ) ( )),,,, μρδ∨ρλδ∧≥μλδ
∈ρ

c
LX  

(5) ( ) ( ).,, λμδ=μλδ  

δ  is called ( )ML, -basic proximity if it satisfied the conditions (1), (2), (3) 

and (5). The pair ( )δ,XL  is called an ( )ML, -proximity space. 

Definition 6.2. A mapping YXF →:  is called ( )ML, -proximity map 

relative to the ( )ML, -(basic) proximity 1δ  on XL  and ( )ML, -(basic) 

proximity 2δ  on ,YL  if for all ,, XLBA ∈  the inequality ( ) ≤δ BA,1  

( ( ) ( ))BFAF LL
→→δ ,2  holds. 

Definition 6.3. Let δ  be an ( )ML, -basic proximity on .XL  The closure 

operator XX LLC →δ :  is defined as follows: for every ;XLA ∈  ( )ACq δ∈  

if and only if ( ) LAq 1, =δ  for each L-fuzzy point q of ( ) =δ ACX :  

{ ( ) }.1,: L
X AqLq =δ∈∨  

This closure operator defines the induced fuzzy topology on X (Chang 

fuzzy topology) { ( ) }.: AACLA Xc =∈=τ δδ  

7. Induced and Restricted ( )ML, -fuzzy Proximities 

Let YX LL ,  be two families of fuzzy subsets and .XY ⊂  In this article, 
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it is discussed how to extend a given ( )ML, -proximity on YL  to an ( )ML, -

proximity on XL  or how to restrict a given ( )ML, -proximity on XL  to an 

( )ML, -proximity on .YL  

In this section, we shall use the notations which are introduced in  
Section 3. 

Theorem 7.1. Each ( )ML, -basic proximity MLL YY →×δ :  on ;YL  

XY ⊂  can be extended to an ( )ML, -basic proximity MLL XX →×δ∗ :  

on XL  as follows: for every :, XLVU ∈  ( ) MVU 1, =δ∗  if ,XVU 0≠∧  

or ( ) ( ).,, YY VUVU ↓↓
∗ δ=δ  

Proof.  

(1) ( ) ( ) .0,, M=δ=δ ∗∗
XXXX 1001  

- ( ) ( ) M0,, =δ=δ∗ YYXX 0101  and ( ) ( ) .0,, M=δ=δ∗ YYXX 1010  

(2) ( ) ( ) ( ).,,, WVWUWVU ∗∗∗ δ∨δ=∨δ  

- If ( ) ,XWVU 0≠∧∨  then XWU 0≠∧  or .XWV 0≠∧  Consequently, 

( ) ( ) ( ).,,, WUWUWVU ∗∗∗ δ∨δ=∨δ  

- If ( ) ,XWVU 0=∧∨  then 

( ) (( ) ) ( )YYYYY WVUWVUWVU ↓↓↓↓↓
∗ ∨δ=∨δ=∨δ ,,,  

( ) ( ) ( ) ( ).,,,, WUWUWUWU YYYY
∗∗

↓↓↓↓ δ∨δ=δ∨δ=  

(3) If ( ) ,1, MVU ≠δ∗  then .cVU ≤  

- If ( ) ( ) ,1,, MYY VUVU ≠δ=δ ↓↓
∗  then XVU 0=∧  and consequently, 

.cVU ≤  

(4) ( ) ( ).,, UVVU ∗∗ δ=δ  
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- If ,XVU 0≠∧  then XUV 0≠∧  and ( ) ( ).,, UVVU ∗∗ δ=δ  

- If ,XVU 0=∧  then ( ) ( ) ( ) =δ=δ=δ ↓↓↓↓
∗

YYYY UVVUVU ,,,  

( )., UV∗δ  

It follows that if δ  is an ( )ML, -basic proximity on ;YL  ,XY ⊂  then 
∗δ  is an ( )ML, -fuzzy basic proximity on .XL  

Theorem 7.2. If δ  is an ( )ML, -proximity on ,; XYLY ⊂  then ∗δ  is 

( )ML, -proximity on .XL  

Proof. It is sufficient to prove that: for any ,, XLVU ∈  then there exists 
XLW ∈  such that ( ) ( ( ) ( )).,,, VWWUVU c

LW X
∗∗

∈
∗ δ∨δ∧≥δ  

(1) If ,XVU 0≠∧  then ( ) .1, MVU =δ∗  It follows that the above 

inequality is valid for every .XLW ∈  

(2) If ,XV 0=∧  then ( ) ( ).,, YY VUVU ↓↓
∗ δ=δ  Then there exists 

YLw ∈  such that 

( ) ( ) ( ( ) ( )),,,,, Y
c

YLwYY VwwUVUVU Y ↓↓∈↓↓
∗ δ∨δ∧≥δ=δ  

where the complement cw  is taken in the fuzzy space ,YL  denote by YL⊂I  
the family of all w satisfying the above inequality. 

(3) For each ,I∈w  we define the fuzzy subset XLW ∈  as follows: 

( ) ( ) YxxwxW ∈= ;  and ( ) .;0 YxxW L ∉=  The family of all defined 

W, for each YLw ∈  will be denoted by .ℑ  It is clear that wW Y =↓  and 

therefore ( ) ( ).,, wUWU Y↓
∗ δ=δ  Moreover, cW  is the complement of W                      

in XL  which satisfies that ( ) ( );xwxW cc =  ,Yx ∈  ( ) L
c xW 1=  and 

( ) .c
Y

c wW =↓  It follows that ( ) ( ).,, Y
cc VwVW ↓

∗ δ=δ  Therefore, 
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( ) ( ) ( ( ) ( )).,,,, VWWUVUVU c
WYY

∗∗
ℑ∈↓↓

∗ δ∨δ∧≥δ=δ  

Consequently, ( ) ( ( ) ( )),,,, VWWUVU c
LW X

∗∗
∈

∗ δ∨δ∧≥δ  since the family 

of all, which is satisfied this inequality, containing .ℑ  

Theorem 7.3. If δC  and ∗δ
C  are the closure operators on the ( )ML, -

(basic) proximity δ  on YL  and the extended ( )ML, -(basic) proximity ∗δ  on 

,XL  respectively, then ( ) ( ) .; Y
XX LAACAC ∈|= ↑δ↑δ∗

 

Theorem 7.4. Each δC -closed fuzzy subset YLA ∈  corresponds to an 

∗δ
C -closed fuzzy subset .X

X LA ∈↑  

Corollary 7.1. Let δ  be a (basic) proximity on ∗δ,YL  be the extended 

(basic) proximity on XL  and .XY ⊂  Then: 

(1) The fuzzy topology { ( ) },: AACLA Yc =∈=τ δδ  which is induced 

by the basic fuzzy proximity δ  on ,YL  defines a family of open fuzzy subsets 

{ ( ) } { ( ) }XX
Xc

X
Xc

X AACLAAACLA ↑↑δ↑δ↑
=∈==∈ ∗::  of the fuzzy 

topology ,∗δτ  which is induced by the basic fuzzy proximity ∗δ  on .XL  

(2) The fuzzy subset YLD ∈  is a δ -neighborhood of the fuzzy subset 
YLB ∈  iff X

X LD ∈↑  is a ∗δ -neighborhood of the fuzzy subset .X
X LB ∈↑  

Theorem 7.5. Each ( )ML, -basic proximity MLL XX →×δ :  on XL  

defines restricted ( )ML, -basic proximity MLL YY →×δ :�  on ( ),YorLY Σ  

where XY ⊂  as follows: ( ) ( );,, XX BABA ↑↑δ=δ�  ., YLBA ∈   

Theorem 7.6. If MLL XX →×δ :  is an ( )ML, -proximity on ,XL  

then it defines ,: MLL YY →×δ�  which is an ( )ML, -restricted proximity 

on .YL  
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Theorem 7.7. If δC  and �δ
C  are the closure operators of the (basic) 

proximity δ  on XL  and the restricted (basic) proximity �δ  on ,YL  then        

the following relations are valid: [ ( )] ( );ACAC YX �δ↓↑δ =  YLA ∈  and 

( ) ( );YY UCUC ↓δ↓δ =| �  .XLU ∈  

Notice that the family of points P for which ( )YLYP ,0=↓  is deleted 

from the above supremum, since this family does not affect the supremum. 

Theorem 7.8. Each δC -closed fuzzy subset XLU ∈  corresponds to a 

∗δ
C -closed fuzzy subset .Y

X LU ∈↓  

The following results are directly obtained. 

Corollary 7.2. Let δ  be an ( )ML, -(basic) proximity on XL  and �δ  be 

the restricted ( )ML, -(basic) proximity on .; XYLY ⊂  Then: 

(1) The fuzzy topology { ( ) },: UUCLU Xc =∈=τ δδ  which is induced 

by the ( )ML, -(basic) proximity δ  on ,XL  defines a family of open fuzzy 

subsets {( ) ( ) } {( ) ( ) }YY
Yc

Y
Yc

Y UUCLUUUCLU ↓↓δ↓δ↓ =∈==∈ �::  of 

the fuzzy topology ,�δτ  which is induced by the (basic) proximity �δ  on .YL  

(2) The fuzzy subset XLU ∈  is a δ -neighborhood of the fuzzy subset 
XLV ∈  iff Y

Y LU ∈↓  is a �δ -neighborhood of the fuzzy subset .Y
Y LV ∈↓  

8. ( )ML, -fuzzy Proximities on ( ) ( )XX LPP ∗Λ ,  and ( )Λ∈ LLLX ;  

In this section, we obtained some relations between the ( )ML, -basic 

fuzzy proximities on ,XL  ( ) ;XLP  ( )Λ∈ LL  and ( ) .XP Λ  It must be 

remarkable that, it is difficult to get any relationship between the ( )ML, - 

proximities on these fuzzy spaces in case of the absence of any relationship 
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between the defined complement operations in these spaces. Due to this 
situation, we replace condition (3) in Definition 6.1 by condition (3*): 

(3*) if ( ),0 , XL≠μ∧λ  then ( ) .,,1, X
M L∈μλ=μλδ  

This condition in ( )XLP∗  ( ( ) )XP Λinor  fuzzy spaces takes the form: 

(3*) if ( ( ) ),, XLP
VU ∗≠ 0∩  then ( ) ( ) .,,1, X

M LPVUVU ∗∈=δ  

Theorem 8.1. Each ( )ML, -basic proximity MLL XX →×δ :  on the 

fuzzy family XL  induces ( ( ) )MLP ,∗ -basic proximity ( ) ( )XX LPLP ∗∗∗ ×δ :  

M→  on the fuzzy family ( ) ,XLP∗  which is defined as follows: 

For every ( ) ( ) ,1,:, M
X VULPVU =δ∈ ∗∗  if ( ( ) )X,LP

VU ∗≠ 0∩  and 

otherwise ( ) ( ) ( )( );,, VjUjVU XXδ=δ∗  where ( ) ( ) ( )( );supp xVxVjX =  
.Xx ∈  

Proof. 

(1) 

( ( ( ) ) ( ( ) ) ) ( ( ( ) ) ( ( ) ) ) ,0,,
,,,, MXLPXLPXLPXLP

=δ=δ ∗∗∗∗
∗∗ 1001  

( ( ( ) ) ( ( ) ) ) ( ( ( ( ) ) ) ( ( ( ) ) ))XLPXXLPXXLPXLP
jj

,,,,
,, ∗∗∗∗ δ=δ∗ 0101  

( ( ) ( ) ) .0, ,, MXLXL =δ= 01  

Similarly, one can show that ( ( ( ) ) ( ( ) ) ) .0,
,, MXLPXLP

=δ ∗∗
∗ 10  

(2) ( ) ( ) ( ):,,, WVWUWVU ∗∗∗ δ∨δ=∨δ  

• If ( ) ( ( ) ),, XLP
WVU ∗≠∨ 0∩  then ( ( ) )XLP

WU
,∗≠ 0∩  or ≠WV ∩  

( ( ) )., XLP∗
0  It follows that ( ) MWVU 1, =∨δ∗  and ( ) MWU 1, =δ∗  or 

( ) .1, MWV =δ∗  In this case, the equality is valid. 
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• Otherwise 

( ) ( ) ( )( ) ( ) ( ) ( )( )WjVjUjWjVUjWVU XXXXX ,,, ∪∪∪ δ=δ=δ∗  

( ) ( )( ) ( ) ( )( )WjVjWjUj XXXX ,, δ∨δ=  

( ) ( ).,, WVWU ∗∗ δ∨δ=  

(3) If ( ( ) ),, XLP
VU ∗≠ 0∩  then ( ) .1, MVU =δ∗  This condition follows 

directly from the definition .∗δ  

(4) ( ) ( ):,, UVVU ∗∗ δ=δ  

• If ( ( ) ),, XLP
VU ∗≠ 0∩  then ( ) ( ).,1, UVVU M

∗∗ δ==δ  

• Otherwise 

( ) ( ) ( )( )( ) ( ) ( )( )( ) ( ).,,,, UVUjVjVjUjVU XXXX
∗∗ δ=δ=δ=δ  

Corollary 8.1. If ∗δ  is ( ( ) )MLP ,∗ -basic proximity on ( ) ,XLP∗  which 

is induced by the ( )ML, -basic proximity δ  on ,XL  then ( ) ( )( )BiAi XX ,∗δ  

( ),, BAδ=  where ., XLBA ∈  

Theorem 8.2. Let δ  be an ( )ML, -basic proximity on ;XL  where L is a 

complete lattice and ∗δ  be the induced ( )ML, -basic proximity by δ  on 

( ) .XLP∗  Then the closure operator δC  on the proximity δ  on XL  and the 

closure operator ∗δ
C  on the induced proximity ∗δ  on ( )XLP∗  satisfy the 

relation: 

( )( ) ( )( ) .; X
XX LAACiAiC ∈= δδ∗

 

Proof. (a) From the definition of the closure operator, we have: 

( )( ) { ( ) ( )( ) },1,: MX
X

X AiPLPPAiC =δ∈= ∗∗
δ∗

∪  
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where P is a fuzzy point in ( ) .XLP∗  Let XLQ ∈  be a fuzzy point, for 

which ( ) LrxQ 00 ≠=  and ( ) ,;0 0xxxP L ≠=  for some .0 Xx ∈  Since 

( ) { ( ) },1,: M
X AQLQAC =δ∈∨=δ  each fuzzy point ( )ACQ δ∈  defines 

a fuzzy point ( ) ( ) ,X
X LPQi ∗∈  satisfying that ( ) ( )( ) ( )AQAiQi XX ,, δ=δ∗  

,1M=  which means that ( ) ( )( ).AiCQi XX ∗δ
∈  Therefore, ( )QiXAQδ∪  

( )( )AiC X∗δ
⊂  and ( ) ( )( ),AiCQi XAQX ∗δδ ⊂∨  and this means ( )( ) ⊂δ ACiX  

( )( ).AiC X∗δ
 

(b) Let ( )XLPP ∗∈  be a fuzzy point and ( )( ).AiCP X∗δ
∈  Then      

there exists Xx ∈0  such that ( ) LxP 00 ≠  and ( ) ;0LxP =  0xx ≠  and 

( )( ) .1, MX AiP =δ∗  Let ( ),0xP∨=α  where the sup is taken over ( ) .0 LxP ⊂  

Denote by XLQ ∈1  the fuzzy point for which: ( ) α=01 xQ  and ( ) ;01 LxQ =  

.0xx ≠  Consider the fuzzy point ( ) ,1
XLPP ∗∈  where ( ).11 QiP X=  One 

can show that .1 PP ⊃  Notice that 

( )( ) ( )( ) ( ) ( )( ) ( ).,,,,1 111 AQAiQiAiPAiP XXXXM δ=δ=δ=δ= ∗∗∗  

Therefore, the fuzzy point ( )( )AiCP X∗δ
∈  implies that the fuzzy point ∈1Q  

( ).ACδ  Consequently, ( ) ( )( ).11 ACiQiPP XX δ⊂=⊂  And so ( )( )AiC X∗δ
 

( )( ).ACiX δ⊂  

From (a), (b), it follows that ( )( ) ( )( ) .; X
XX LAACiAiC ∈= δδ∗

 

Theorem 8.3. The mapping Xi  translates the family of δ -closed fuzzy 

subsets in XL  into a subfamily of ∗δ -closed fuzzy subsets in ( ) .XLP∗  

Corollary 8.2. Let δ  be an ( )ML, -basic proximity on XL  and ∗δ  be 

the induced ( )ML, -basic proximity on ( ) .XLP∗  Then: 
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(1) The fuzzy topology { ( ) },: AACLA Xc =∈=τ δδ  which is defined by 

the ( )ML, -basic fuzzy proximity δ  on ,XL  defines a family of open fuzzy 

subsets { ( ) ( ) ( )( ) ( )}AiAiCLPAi XX
Xc

X =∈ ∗δ
∗ :  of the fuzzy topology ,∗δτ  

which is induced by the ( )ML, -basic fuzzy proximity ∗δ  on ( ) .XLP∗  

(2) The fuzzy subset Xc LD ∈  is a Σ -neighborhood of the fuzzy subset 
XLB ∈  iff ( ) Xc

X LDi ∈  is a ∗δ -neighborhood of the fuzzy subset ( )∈BiX  

( ) .XLP∗  

Theorem 8.4. Each ( ( ) )MLP ,∗ -basic proximity ( ) ( )XX LPLP ∗∗ ×δ :  

M→  on the fuzzy family ( )XLP∗  induces ( )ML, -basic proximity :◊δ  

MLL XX →×  on the fuzzy family ,XL  which is defined as follows:  

for every ( ) ( ) ( )( ).,,:, BiAiBALBA XX
X δ=δ∈ ◊  

Theorem 8.1 shows that each ( )ML, -basic fuzzy proximity ×δ XL:  

MLX →  induces ( ( ) )MLP ,∗ -basic proximity ( ) ( ) MLPLP XX →×δ ∗∗Δ :  

on the fuzzy family ( ) .XLP∗  Let L be a lattice defined on a nonempty set .Λ  

Consider Xi  as a function from XL  to ( ) .XP Λ  The following results can be 

considered as extensions of Theorem 8.1 and Theorem 8.2. 

Theorem 8.5. Each ( )ML, -basic proximity MLL XX →×δ :  on ;XL  

( )Λ∈ LL  induces ( )( )MP ,Λ -basic proximity ( ) ( ) MPP XX →Λ×ΛδΔ :  

on ( ) ,XP Λ  which is defined by: ( ) ,1, MVU =δΔ  if ( )( )XPVU ,Λ≠ 0∩     

and otherwise ( ) ( ) ( )( );,, VjUjVU XXδ=δΔ  where ( )( ) ( )( );supp xVxVjX =  

,Xx ∈  where the supremum is taken in the lattice L. 

Theorem 8.6. Let MLL XX →×δ :  be an ( )ML, -proximity on ;XL  

( )Λ∈ LL  is a complete lattice and ( ) ( ) MPP XX →Λ×ΛδΔ :  be the 
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( )( )MP ,Λ -induced proximity on ( ) .XP Λ  The closure operator on the 

proximity δ  on XL  and the closure operator Δδ  on ( )XP Λ  satisfy the 

relation: ( )( ) ( )( ) .; X
XX LAACiAiC ∈= δδΔ

 

Theorem 8.7. For every nonempty set Λ  and for every ( )ML, -basic 

proximity δ  on ;XL  ( ),Λ∈ LL  there exists a ( )( )MP ,Λ -basic proximity 
Δδ  on ( )XP Λ  such that the mapping Xi  translates the family of δ -closed 

fuzzy subsets { }A  in XL  into the family of Δδ -closed fuzzy subsets in 

( ) .XP Λ  

Corollary 8.3. Let δ  be an ( )ML, -basic proximity on XL  and Δδ  be 

the induced ( )( )MP ,Λ -basic proximity on ( ) .XP Λ  Then: 

(1) The fuzzy topology { ( ) },: AACLA Xc =∈=τ δδ  which is defined by 

the ( )ML, -basic proximity δ  on ,XL  corresponds to the subfamily of open 

fuzzy subsets: { ( ) ( ) ( )( ) ( )}AiAiCPAi XX
Xc

X =Λ∈ Δδ
:  of the fuzzy topology 

Δδ
τ  on ( ) ,XP Λ  which is induced by the basic proximity .Σ  

(2) The fuzzy subset Xc LA ∈  is a δ -neighborhood of the fuzzy subset 
XLB ∈  iff ( ) ( )Xc

X PAi Λ∈  is a Δδ -neighborhood of the fuzzy subset 

( ) ( ) .X
X PBi Λ∈  

Theorem 8.8. Each ( )( )MP ,Λ -basic proximity ( ) ( )XX PP Λ×Λδ :  

M→  on the fuzzy family ( )XLP∗  induces ( )ML, -basic proximity :◊δ  

MLL XX →×  on the fuzzy family ,XL  which is defined as follows: for 

every ;, XLBA ∈  

( ) ( ) ( )( ).,, BiAiBA XXδ=δ◊  
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9. Categories of the Proximity Spaces on 

( ) ( )XX LPP ∗Λ ,  and ( )Λ∈ LLLX ;  

Definition 9.1. Let ( )1, δX  and ( )2, δY  be two ( )ML, -basic proximity 
spaces. 

A function YXF →:  is called an ( )ML, -proximity mapping if 

( ) ( ( ) ( )) .,,,, 21
XLBABFAFBA ∈∀δ≤δ →→  

Definition 9.2. Let ( )1, δX  and ( )2, δY  be two ( )ML, -basic proximity 

spaces. A fuzzy function ( ) YXfF x →= :,F  is called an ( )ML, -fuzzy 

proximity mapping if 

( ) ( ( ) ( )) .,,,, 21
XLBABABA ∈∀δ≤δ →→ FF  

The family of all ( )ML, -basic proximity spaces and ( )ML, -proximity 

mappings from a category that will be denoted by ( ),, MLBProx  while the 

family of all ( )ML, -basic proximity spaces and ( )ML, -fuzzy proximity 

mappings from a category that will be denoted by ( )( )., MLFBProx  

Moreover, the subcategory of ( )MLFBProx ,  with ( )ML, -basic proximity 

spaces and fuzzy functions with identity comembership functions on L will 
be denoted by ( )., MLidFBProx  

Lemma 9.1. (1) ( ) ( ) ( )( )21 ,,,, δδ∈ YXF MLBProx  implies 

( ) ( ( ) ) (( ) ( )),,,,,, 21
∗∗∗ δδ∈ YXidF L MLPBProx  where ( ) ,1, MVU =δ∗  

if ( ( ) )X,LP
VU ∗≠ 0∩  and otherwise ( ) ( ) ( )( ).,, VjUjVU XXδ=δ∗  

(2) ( ) ( ( ) ) ( ) ( )( )21 ,,,,, δδ∈= ∗ YXidG L MLPFBProxG  implies 

( ) (( ) ( )),,,,, 21
◊◊ δδ∈ YXG MLBProx  where ( ) ( ) ( )( ).,, BiAiBA XXδ=δ◊  

(3) ( ) ( ( ) ) ( ) ( )( )21 ,,,,, δδΛ∈= YXPidG L MFBProxG  implies 

( ) (( ) ( )),,,,, 21
◊◊ δδ∈ YXG MLBProx  where ( ) ( ) ( )( ).,, BiAiBA XXδ=δ◊  
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Theorem 9.1. The mapping Xi  (respectively )Xj  generates a functor 

PI  (respectively )PJ  as follows: 

(1) 

( ) ( ( ) ),,,: MLPFBProxMLBProxJP
∗→  

where ( ) ( )( ),,, δ=δ PP JJ XX  where ( ) ( ) ( ).,, LidFF =δ=δ ∗
PP JJ  

(2) 

( ( ) ) ( ),,,: MLBProxMLPidFBProxIP →∗  

where ( ) ( )( ),,, δ=δ PP II XX  where ( ) ( ) .,, FidF L =δ=δ ◊
PP II  

Lemma 9.2. Let ( ) ( ( ) )MLPFBProx ,, ∗∈δX  and ( ) ∈ρ,X  

( )., MLBProx  Then we have the following: 

(1) ( ).ρ=ρ PPJI  

(2) ( ).δ≤δ PP IJ  

Theorem 9.2. The functor PI  is left adjoint to the functor 

( ),PPP JIJ E  where PI  and ( ) ( ( ) )MLPidFBProxMLBProxJ
P

P

J

I
P ,,: ∗  

are defined in Theorem 9.1. 

Proof. Let ( ) ( ( ) ) ( ) ( ).,,,,, MLBProxMLPidFBProx ∈ρ∈δ ∗ YX  

Lemma 9.2 implies that the identity fuzzy function 

( ) ( ) ( )( )δ→δ PP IJ,,:, XXidid LX  

is a ( ( ) )MLP ,∗ -fuzzy proximity mapping. Therefore, it is sufficient to show 

that for every ( ) ( ( ) ) ( ) ( )( )( )ρδ∈ ∗
PJMLPidFBProx ,,,,,, YXidF L  there 

exists a unique ( ) ( )( ) ( )( )ρδ∈ ,,,, YXG PIMLBProx  making the following 

diagram commutes: 
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( )( )
( )

( )( )δ←ρ PP
J

P IJJ
P

,, XY
G

 

( ) ( )LXL idididF ,, ↗↖  

( )δ,X  

Let ,FG =  since ( )LidF ,  is a ( ( ) )MLP ,∗ -proximity mapping. Then 

( ) ( ) ( ) ( )( )BiAiBA XX ,, δ=δPI  

( ) (( ) ( )( ) ( ) ( )( ))BiidFAiidF XLXL
→→ρ≤ ,,,PJ  

( ) ( ( ( )) ( ( )))BFiAFi YY
→→ρ= ,PJ  

( ( ( ( ))) ( ( ( )))) ( ( ) ( )).,, BFAFBFijAFij YYYY
→→→→ ρ=ρ=  

Thus, FG =  is an ( )ML, -proximity mapping and is the unique function 

that makes the above diagram commutes. Therefore, PP JI E  and the functor 

PI  is left adjoint to .PJ  

One can show that easily the category ( )MLBProx ,  is isomorphic to 

the category ( )MLidFSBProx ,  with the functors 

( ) ( ),,, MLidFBProxMLBProx
P

P

R

S
 

where 
( ) ( ) ( ) ( ),,,,, LidFFXX =δ=δ PP RR  

( ) ( )δ=δ ,, XXPS    and   ( ) ., FidF L =PS  

Now, to prove that ( )ML, -basic proximity spaces are embedded in 

( ( ) )MLP ,∗ -basic proximity spaces, we define the subfamily E of ( )LP∗  as 

the range of the mapping ( ),: LPLi ∗→  [ ]{ }.:,0 LE ∈αα=  The mapping 

i embeds E in ( ).LP∗  This restriction redefines the induced ( )ME, -basic 

proximity ∗δ  on XE  of ( )ML, -basic proximity δ  on XL  as follows: 
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For every ( ) ( ) ( )( ).,,;, BiAiBALBA XX
X ∗δ=δ∈  

Moreover, each ( )ME, -basic proximity MEE XX →×δ :  on the 

fuzzy family XE  induces ( )ML, -basic proximity MLL XX →×δ◊ :  on the 

fuzzy family ,XL  which is defined as: for every ;, XLBA ∈  ( ) =δ◊ BA,  

( ) ( )( )., BiAi XXδ  

Theorem 9.3. The category ( )MLBProx ,  is isomorphic to the category 

( )MEidFBProx ,  with the two functors :, PP JI  

( ) ( ).,, MEidFBProxMLBProx
P

P

J

I
 

Theorem 9.4. The mapping Xi  (respectively )Xk  generates a functor 

PI  (respectively )PK  as follows: 

(1) 

( ) ( ( ) ),,,: MPFBProxMLBProxKP Λ→  

where ( ) ( )( ),,, δ=δ PP KK XX  where ( ) ( ) ( ).,, LidFF =δ=δ Δ
PP KK  

(2) 

( ( ) ) ( ),,,: MLBProxMLPidFBProxIP →∗  

where ( ) ( )( ),,, δ=δ PP II XX  where ( ) ( ) .,, FidF L =δ=δ ◊
PP II  

Lemma 9.3. Let 

( ) ( ( ) )MPFBProx ,, Λ∈δX    and   ( ) ( ).,, MLBProx∈ρX  

Then we have the following: 

(1) ( ).ρ=ρ PP KI  

(2) ( ).δ⊂δ PKI  
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Theorem 9.5. The functor PI  is left adjoint to the functor PK  

( ),PP KI E  where PP KI ,  are defined in Theorem 9.4 and 

( ) ( ( ) ).,, MPidFBProxMLBProx
P

P

K

I
Λ  

From Theorem 9.3, ( )MLBProx ,  is isomorphic to the subcategory 

( )MEidFBProx ,  of ( ( ) ),, MPBProx Λ  moreover, the functor PK  is an 

injective. Therefore, the category ( )MLBProx ,  is embedded in the category 

( ( ) ),, MPBProx Λ  for every ( ).Λ∈ LL  

10. Conclusion  

From the study of proximity spaces in some family of fuzzy subsets, we 
can advocate that every basic proximity in the category ( ),, MLBProx  for 

every ( ),Λ∈ LL  is isomorphic to at least one basic proximity in the category 

( ( ) )., MPBProx Λ  
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