البحث رقم 3

Publication date: January 2019

Ceramics International 45 (2019) 8460-8470

https://doi.org/10.1016/j.ceramint.2019.01.156

Morphological, surface and optical properties of spin-coated IrOx films; influence of spin speed, annealing and (Cr, La) codoping

Adel M. El Sayed, Mohamed Shaban*

Abstract:

Iridium oxide (IrO_x) is a fascinating metal oxide with superior chemical/physical properties. The present report is a try to tune the surface and optical properties of IrO_x to widen its industrial and technological applications. The influences of substrates rotational speed (RS), annealing temperature (AT), Cr-doping, and (La, Cr) co-doping on the surface morphology and wettability, structural as well as the optical properties of spin-coated IrO_x films are discussed. Raman spectra of the films show a characteristic phonon mode at 552 cm⁻¹, arising from the Ir-O_x stretching and influenced significantly by the preparative conditions (RS and AT) as well as Cr, La doping. EDX spectra were detected to confirm the chemical compositions of prepared IrO_x nanostructure thin films. FE-SEM images reveal the growth of un-doped, Cr-doped and (Cr, La) co-doped nanorod-like IrO_x structures. The annealed film at 500 °C and Cr-doped films showed the nanoporous nature of the grown nanorod-like structures. The films are hydrophilic and follow Wenzel Model. The wetting ability is enhanced by decreasing RS and increasing AT. Increasing RS result in increasing the transmittance (T%) owing to decreasing the films' thickness. At wavelength $\lambda = 10^3$ nm, the deposited film shows T% = 53.2 and the film annealed at 500 °C exhibits T% = 44.3. The optical band gap (E_q^{op}) increased with increasing RS and decreased with increasing AT. Crdoping redshifted E_g^{op} from 2.95 to 2.85 eV, while, the co-doping with La blueshifted E_g^{op} to 3.14 eV. The effect of Cr and La doping on the optical constants of IrO_x films was investigated and compared with those of other transition metal oxide films as no data are available in the literature for IrO_x films.

Adel M. El Sayed	Designed the idea of the work, sample preparation, methodology, characterization, writing the original draft, reviewing and editing the final draft.
Mohamed Shaban	Contributed to work design, methodology, characterization, validation, contributed to writing, editing and reviewing the final draft.