

Solar Energy Materials & Solar Cells 217 (2020) 110705

https://doi.org/10.1016/j.solmat.2020.110705

Publication date: July 2020

Influence of the Spin Deposition Parameters and La/Sn Double Doping on the Structural, Optical, and Photoelectrocatalytic Properties of CoCo₂O₄ Photoelectrodes

Mohamed Shaban^{*}, Adel M. El Sayed

Abstract:

In this report, dual bandgap $CoCo_2O_4$ nanostructured films were spin-coated at different preheat temperatures (PHT) using different solution molarities (SM), Sn doping and La/Sn double doping levels. In addition to chemical compositions, various methods were used to investigate the structural, morphological, roughness, and optical properties. All the films are polycrystalline CoCo₂O₄, for simplicity Co₃O₄, spinel (AB₂O₄) cubic phase. The doping levels of Sn and La/Sn have strongly affected the surface morphologies and roughness parameters. PHT, SM, Sn% and La% show significant changes in lattice parameters, crystallite sizes, transmittance and reflectance spectra. Two bandgaps were detected in the range of 1.3–1.45 eV and 1.72-2.08 eV. With increasing PHT and decreasing SM, the refractive indices decreased and substantially modified with the inclusion of Sn and La in the matrix Co₃O₄. Among the applied electrodes for photoelectrochemical (PEC) hydrogen generation, the La/Sn-doped Co₃O₄ photocatalyst displays a catalytic H₂ output rate of 134.50 mmol h⁻¹/cm² @-1Vwith IPCE% of ~52% @ 460 nm. The supreme values of ABPE% are 3.21%@-0.24V and 3.75%@-0.57V, which are the highest values yet for Co₃O₄-based photocatalysts. Interestingly, this photoelectrode shows photogenerated current densities of ~ -1.57 mA/cm² at 0 V and -48.42 mA/cm² at -1V, and photocurrent onset over -0.361 V. The PEC surface areas and Tafel slopes are also studied for the identification of the mechanism of PEC H₂ production. The La/Sn doped-Co₃O₄ photoelectrode has been further tested for stability and reusability. This work has provided a new viewpoint to design highly active Co_3O_4 -based photocatalysts for solar light-driven H₂ generation.

Mohamed Shaban	Designed the idea of the work, characterization, measuring and
	discussion of photocatalytic activity and H ₂ generation, writing the
	original draft, reviewing and editing the final draft.
Adel M. El Sayed	Contributed to work design, sample preparation, methodology,
	characterization, validation, contributed to writing, editing and reviewing the final draft.
	Tevrewing the infaturate.