Study of Alpha-Decay Half–Life Time Using Analytical Formula

Presented by

Samar Gamal Abd El Nasser

B. Sc.

Physics Department

Faculty of Science-Fayoum University

A Thesis Submitted

to

Faculty of Science

In Partial Fulfillment of the Requirements for

the Degree of Master of Science

In

(Theoretical physics)

Physics Department

Faculty of Science

Cairo University

(* • 19)

APROVAL SHEET FOR SUMISSION

Study of Alpha-Decay Half–Life Time using Analytical Formula

By

Samar Gamal Abd ELNasser

B. Sc

Physics department

Faculty of Science-Fayoum University

The Supervisors:

Prof. Dr. M.Y. Ismail

Theoretical Physics, Faculty of Science, Cairo University

Signature:

Dr. I. A. M. Abdul-Magead

Theoretical Physics, Faculty of Science, Cairo University Signature:

Prof. Dr. Badawy Abu-Ibrahim Ibrahim Chairman of physics Department Faculty of Science- Cairo University

Study of Alpha-Decay Half–Life Time using Analytical Formula

ABSTRACT

In the framework of the preformed-cluster model, a simple method for calculating α -decay half-lives (T_{ν_2}) of even-even nuclei in the range Z_p =90-122 and N_p =112-190 is derived using the WKB approximation. Then, the neutron number variation of both log $(T_{1/2})$ and the reciprocal of α -decay energy $(1/Q_{\alpha})$ are studied to explore nucleon magic numbers. The study shows that the shell effect plays an important role in α -decay half-lives and α -decay energies. That is, the closer the nucleon number of daughter nuclei to a magic number, the smaller the values of both log $(T_{1/2})$ and $(1/Q_{\alpha})$ of the parent nucleus. As a result, the predicted neutron and proton magic numbers are N=126, 162, 178 and 184 and Z=108, 114, 118 and 120, respectively, which are found in agreement with those predicted in other studies.

Keywords: α -decay, Superheavy nuclei, Half-life, α -decay energy.