
DDBSCAN: Different Densities-Based Spatial

Clustering of Applications with Noise

Mohammad F. Hassanin

Computer Science Dept.,

Faculty of Computers and

Information,

Fayoum University, Egypt

mff00@fayoum.edu.eg

 Mohamed Hassan
Information Systems Dept.,

Faculty of Computers and

Information,

Fayoum University, Egypt

mhi11@fayoum.edu.eg

Abdalla Shoeb
Computer Science Dept.

Faculty of Computers and

Information

Fayoum University, Egypt

Abstract— Recent advances in using computer with different

fields of sciences produced huge amounts of data. These data

represent as an analysis tool and key to overcome many

problems. Clustering is a primary process to analyze the data as

well as, it’s a preprocessing step before other techniques like

classification. Density-Based clustering algorithms have

advantages like clustering any arbitrary shapes and defining

number of clusters according to database. DBSCAN (Density

Based Spatial Clustering of Application with Noise) [1] is the

basic density-based algorithm. But it fails to discover different

densities clusters, adjacent clusters and finally some noise points

among different densities clusters. This paper addresses

DBSCAN problems and tries to solve these problems by

developing DDBSCAN. The basic idea is to compute the density

of a cluster with respect to radius value Eps and minimum

number of points MinPts. Then provide density threshold which

is the responsible for joining a point to a certain cluster or not.

Experiments show that DDBSCAN outperforms DBSCAN in

different densities and adjacent clusters datasets.

Keywords: Density-based Clustering; DBSCAN; different

density datasets

I. INTRODUCTION

Data mining has become a basic process before

dealing with data and a preprocessing step in data mining

techniques. Clustering tries to partition data to clusters based

on similarity metrics while it maximizes inter-relations and

minimizes intra-relations among dataset objects. Clustering

Techniques lie among Partitioning, Hierarchical, Density

based, Grid, and Model methods.

 Density-based ones are very important to discover clusters of

arbitrary shapes. DBSCAN is the main algorithm in density

based techniques and it is efficient in discovering arbitrary

shapes as well as it does not require predefined number of

clusters as a parameter. It discovers clusters with respect to

MinPts and Eps, but it still has problems when discovering

multi-density clusters, adjacent clusters or noise points

amongst adjacent clusters. Other traditional techniques such as

OPTICS and DENCLUE have troubles to recover datasets

with varying densities and adjacent clusters also. Many

extensions to DBSCAN were developed to overcome above

mentioned shortcomings. VDBSCAN is developed to solve

the problem of varying densities but did not expose to adjacent

clusters or adjacent clusters noise point’s problems.

In this paper, a new improved density based algorithm is

introduced. DDBSCAN (Different Densities-Based Spatial

Clustering of Applications with Noise) tries to address all

mentioned DBSCAN problems. The main idea is to define a

density factor to the cluster and the object then defines a

threshold parameter as decision criterion to determine whether

joining this object or not. On this basis, any cluster will

contain similar density nodes only.

Rest of paper is organized as follows; section 2 presents

related works of DBSCAN. Section 3 has two sections, the

first shows basic concepts of DBSCAN and the second

presents DDBSCAN concepts. Section 4 shows the proposed

algorithm. Section 5 discusses the results of testing

DDBSCAN over different datasets. Finally, section 6 is

regarded to conclusions.

II. RELATED WORKS

Because DDBSCAN is an improvement in DBSCAN, we will

introduce past studies related to density based algorithms.

DBSCAN is the pioneer in density-based algorithms. It

requires two input parameters Eps and MinPts. It starts with

point p and gets all Eps-neighbors with respect to. Eps. If p is

core point, the cluster is formed. Repeat this procedure until

visiting all density-reachable points of p. it visits another point

in dataset and so on. It can identify arbitrary shapes and does

not require a pre-defined number of clusters. But it does not

behave well with different densities datasets.

OPTICS [2] is another density-based algorithm. It computes

the ordering of points based on reachability distance so that it

produces a structure of clusters not explicit clusters. This

structure can be used to produce clusters, basic information

about datasets. However, OPTICS has an issue related with

explicit clusters of datasets and it needs another algorithm

beside it to produce explicit clusters.

ST-DBSCAN [3] is an extension of DBSCAN to handle

spatial-temporal datasets. It redefines border point to discover

adjacent clusters and noise points among adjacent clusters.

ST-DBSCAN does not handle varied densities well.

VDBSCAN [4] is developed to discover clusters with varied

densities. It depends on generate several Eps parameters using

k-dist plot. It proves a good manipulation of varied densities

clusters but it has a trouble when discovering adjacent clusters

and its noise points.

Incremental DBSCAN [5] algorithm is discovering clusters

from dataset with incremental approach. If any object added

later to dataset, it will add to existing clusters. It working

normally like DBSCAN but if new points are added, it clusters

and merges with existing clusters.

DBCLUM [6] algorithm is an extension of DBSCAN. It

defines clustering in two main steps, Clustering and then

merging. It clusters dataset individually with Eps and Minpts,

then merges joined and similar clusters together according to

given threshold. In contrast to DBSCAN, it eliminates concept

of density-reachable. DBCLUM handles varied densities well,

but it has problem with measuring density factor which it uses

to merge clusters.

KDDClus [7] algorithm is another enhancement of DBSCAN.

It used nearest neighbor algorithms to find Eps-neighborhood.

It uses K D –tree data structure to compute Eps-neighborhood.

Then store average KNN distances for different patterns. Then

form clusters. It discovers clusters with multiple densities

well. But using KD tree increases the time and processing the

datasets. In addition to, it suffers when discovering adjacent

clusters and amongst noise points.

Chameleon [8] discovers clusters of dataset by two-phase

algorithm. Firstly, it generates k-nearest neighbor graph.

Finally, it merges similar sub-clusters together.

As mentioned above, if algorithm solved problem like varying

densities, it would fall into adjacent clusters and its noise

points and vice versa. DDBSCAN is designated to overcome

all these problems.

III. BASIC CONCEPTS

Definition 1(Eps-Neighborhood): gets all neighbor nodes

within range Eps. There are two types of points, core point and

border point. Any point is called core point if its Eps-

neighborhood exceeds MinPts. A point is called border point

if its Eps-neighborhood less than MinPts.

Fig. 1: Core points and border points.

Definition 2(Density-reachable): an object p is density-

reachable with q, if there is a chain of objects x1, x2,…, xn

connected between them such that p=x1 and q=xn

Definition 3(Density-connected): an object p is density-

connected with q, if there is an objects x such that p is density-

reachable from x and also q is density-reachable with x with

respect to MinPts and Eps.

Definition 4 (Cluster): A cluster C is a subset of D has the

following requirements

1. maximality : p, q: if p ε C and q is density-

reachable from p, then q ε C.

2. Connectivity: p, q: if p ε C and q is density-

connected from p, then q ε C.

Definition 5 (Noise): noise points refer to those points which

are not joined to any cluster.

IV. DDBSCAN CONCEPTS

The above definitions are defined by DBSCAN algorithms,

but still have problems with different densities datasets as well

as adjacent clusters. Concepts of DDBSCAN will be presented

now

Definition 5 (local eps): is equal to Eps of algorithm.

Definition 6 (global eps): represents the real radius of cluster.

Because of density-reachable points may join cluster, the real

radius of cluster is changeable. Initially, global eps equals

local eps. If an object will join the cluster, update global eps as

shown in Figure 2.

Fig. 2: global Eps.

Definition 7 (local cluster): A cluster C is a subset of D with

connectivity condition.

 p, q: if p ε C and q is density-connected from p,

then q ε C.

Definition 8 (global cluster): referred to in definition 4.

Definition 9 (local density): is the number of objects in local

cluster divided by local eps.

Definition 10(global density): is the number of objects in

global cluster divided by global eps.

Definition 11 (MinMax): MinMax(O1,O2) = .

V. DDBSCAN ALGORITHM

 Initially, DDBSCAN accepts two parameters Eps and

Threshold. Eps is used to get all objects within this region and

Threshold is used as a decision criterion to determine whether

an object will join the cluster or not. It starts with computing

density for each object. This density is used to determine

which object will be the first to expand. Then the best object

which has the highest density value is retrieved to pass it to

expand method.

DDBSCAN (SetOfObjects, Eps, Threshold)
// SetOfObjects is UNCLASSIFIED

 FOR i FROM 1 TO SetOfObjects.size DO

 Objects := SetOfObjects.regionQuery(currentO,Eps);
 currentO.density = Objects.size

 END FOR

 ClusterId := nextId(NOISE);
 FOR i FROM 1 TO SetOfObjects.size DO

 Object := SetOfObjects.getHighestDensity();

 IF Object.CluId = UNCLASSIFIED THEN
 IF ExpandCluster(SetOfObjects, Object, CluId,Eps)THEN

 CluId := nextId(CluId)

 END IF
 END IF

 END FOR

END; // DDBSCAN

First step in Expand process is to retrieve all objects that lie

into Eps distance as stated in Definition 1. The object id

marked NOISE (Definition 5) if and only if it is not has cluster

id. DDBSCAN changed the criteria of joining or merging

objects with clusters. To join object to cluster, the density must

be less than threshold as stated. It defines maxEps as in figure 2

that holds the distance between current Point and farthest one

in cluster as well as, local eps given parameter. Density now is

ready to be computed. Divide seeds list size which is current

point region by local density and divide result size which is

cluster size by global density. Finally, use MinMax definition

13 to determine whether to merge current point or not.

ExpandCluster(SetOfObjects, Object, CluId, Eps) : Boolean;

 seedsList:=SetOfObjects.regionQuery(Object,Eps);
 IF seedsList.size== 0 THEN // no core Object

 SetOfObject.changeCluId(Object,NOISE);

 RETURN False;
 ELSE // all Objects in seedsList are density-reachable from Object

 SetOfObjects.changeCluIds(seedsList,CluId);

 seedsList.delete(Object);
 WHILE seedsList <> Empty DO

 currentP := seedsList.first();

 maxEps = currentP.distance(Object);
 IF maxEps > globalEps THEN

 globalEps = maxEps;

 results := SetOfObjects.regionQuery(currentO,Eps);
 IF results.size >= 0 THEN

 FOR i FROM 1 TO results.size DO

 resultO := results.get(i);
 IF resultO.CluId

 IN {UNCLASSIFIED, NOISE} THEN

 IF resultO.CluId = UNCLASSIFIED THEN
 localDensity = results.size / Eps;

 globalDensity = seedsList.size / globalEps;

 seedsList.append(resultO);

 END IF;

 SetOfObjects.changeCluId(resultO, CluId);

 END IF; // UNCLASSIFIED or NOISE
 END FOR;

 END IF;
 seedsList.delete(currentO);

 END WHILE; // seedsList <> Empty

 RETURN True;
 END IF

END; // ExpandCluster

VI. SIMULATION AND RESULTS

Real datasets and artificial datasets were tested to

prove the validity of DDBSCAN. The artificial dataset has

two main clusters which are different densities as they are

adjacent clusters as in Figure 3. This dataset has 3706 points.

Fig. 3: different densities and adjacent clusters dataset.

Weka[10] is used as the experiment tool. From experiment,

DBSCAN fails to detect adjacent clusters and also different

densities ones. Figure 4 shows the result of clustering using

DBSCAN.

The following figures show the drawbacks of DBSCAN which

lie between two cases. In one hand, it fails to cluster the dataset

and mark most of them as noise as in figure 4. In the other

hand, DBSCAN fails to discriminate the adjacent and different

densities clusters by producing single cluster as in figure 5.

Fig. 4: DBSCAN result if parameters are Eps=.06 and MinPts=6

Fig. 5: DBSCAN result if parameters are Eps=.061 and MinPts=6

Clustering using DDBSCAN becomes better than DBSCAN

especially adjacent clusters and different densities. The

following figure shows the results of clustering using

DDBSCAN. The key behind DDBSCAN powerful is threshold

that defines which node has to join the cluster. As well as,

threshold must define weight of node individually before

joining it.

Fig. 5: DDBSCAN results using Eps=29 and Threshold=0.95

Real datasets have been used for testing as well. Iris ,

Haberman from UCI [9] which are used. In addition to, three

artificial datasets have been tested. AdjacentDS and NoisyDS.

DDBSCAN has proved its ability and validity for identifying

any types of clusters whether it is adjacent, different densities

or general cases.

VII. CONCLUSION

No profound of density-based clustering algorithms because of

its ability to cluster datasets with arbitrary shapes. Many

studies had DBSCAN to overcome main problems of it. In this

literature, DDBSCAN is proposed to handle mentioned

DBSCAN problems. Other algorithms tried to solve these

problems before like ST-DBSCAN, but still have concerns

with different-densities databases and adjacent clusters as well

as, it adds new parameters other Eps and MinPts. DDBSCAN

works with two parameters only and proved its ability to

overcome DBSCAN problems especially adjacent clusters and

different-densities clusters.

REFERENCES

[1] Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996, August). A
density-based algorithm for discovering clusters in large spatial
databases with noise. In Kdd(Vol. 96, No. 34, pp. 226-231).

[2] Ankerst, M., Breunig, M. M., Kriegel, H. P., & Sander, J. (1999,
June). OPTICS: ordering points to identify the clustering structure.
In ACM Sigmod Record (Vol. 28, No. 2, pp. 49-60). ACM.

[3] Birant, D., & Kut, A. (2007). ST-DBSCAN: An algorithm for
clustering spatial–temporal data. Data & Knowledge Engineering, 60(1),
208-221.

[4] Liu, P., Zhou, D., & Wu, N. (2007, June). VDBSCAN: varied
density based spatial clustering of applications with noise. In Service
Systems and Service Management, 2007 International Conference
on (pp. 1-4). IEEE.

[5] Ester, M., Kriegel, H. P., Sander, J., Wimmer, M., & Xu, X. (1998,
August). Incremental clustering for mining in a data warehousing
environment. In VLDB(Vol. 98, pp. 323-333).

[6] Fawzy, M., Badr, A., Reda, M., & Farag, I. (2013). DBCLUM:
Density-based Clustering and Merging Algorithm. International Journal
of Computer Applications, 79(14), 1-6.

[7] Mitra, S., & Nandy, J. (2011). KDDClus: A Simple Method for
Multi-Density Clustering. SKAD’11–Soft Computing Applications and
Knowledge Discovery, 72.

[8] Karypis, G., Han, E. H., & Kumar, V. (1999). Chameleon:
Hierarchical clustering using dynamic modeling. Computer, 32(8), 68-
75.

[9] (http://archive.ics.uci.edu/ml/).

[10] Witten, I. H., Frank, E., Trigg, L. E., Hall, M. A., Holmes, G., &
Cunningham, S. J. (1999). Weka: Practical machine learning tools and
techniques with Java implementations.

http://archive.ics.uci.edu/ml/

