
Indian Journal of Science and Technology, Vol 11(18), DOI: 10.17485/ijst/2018/v11i18/119112, May 2018
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Hash Semi Join MapReduce to Join Billion Records in
a Reasonable Time

Marwa Hussien Mohamed1*, Mohamed Helmy Khafagy2 and Mohamed Hasan Ibrahim3

1Department of Information Systems, Arab Academy for Science, Technology and Maritime Transport,
Cairo, Egypt; eng_maroo1@yahoo.com

2Department of Computer Science, Fayoum University, Cairo, Egypt;Mhk00@fayoum.edu.eg
3Department of Information Systems, Fayoum University, Cairo, Egypt; mhi11@fayoum.edu.eg

*Author for correspondence

Abstract
Objective: MapReduce is a programming model used to support massive data sets. Big data are the most important issue
today to analyze these data. Methods/Statistical Analysis: MapReduce is used to discover hidden patterns and relations
in data to get more helpful information by using two simple functions map and reduce written by the programmer, it
includes load balancing, fault tolerance and high scalability. The most important operation in data analysis are join, but
MapReduce is not directly support join. Findings: This paper explains two-way MapReduce join algorithm, semi-join and
per split semi-join and proposes new algorithm hash semi-join that used hash table to increase performance by eliminating
unused records as early as possible and apply join using hash table rather than using map function to match join key with
other data table in the second phase but using hash tables isn’t affecting on memory size because we only save matched
records from the second table only. Our experimental result shows that using a hash table with hash semi-join algorithm
has higher performance than two other algorithms while increasing the data size from 100 million records to 50 billion.
Application/Improvements: Running time is increased according to the size of joined records between two tables using
30 machines to run our data but our algorithm has the better running time than other algorithms.

Keywords: Hadoop, Hash Semi Join, MapReduce, Two-Way Join

1. Introduction
The most important issue in researches today is analyzing
and process large data sets1. MapReduce-based-system is
designed to process and analyze these data sets to gain
more knowledge and helpful information to support
industry and academia researches2.

MapReduce are a programming model arises from
2004 by Google2. It’s used to analyze and support hetero-
geneous datasets. It’s becoming more popular according
to the simplicity interface, handling fault tolerance, load
balancing and high scalability.

MapReduce3 utilizes the simplest programming
according to using two main functions map function and
Reduce function these two important functions are writ-
ten by the programmer to gain his task and everything like
handling fault tolerance and load balancing are done by
the framework by default. Every record of data assigned

to map task are generated as a key value pair then this out-
put are sent to the reduce task to do the main operation
assigned by the programmer to group these values with
the same key to generating final output4.

Apache Hadoop3 is an open source framework was
developed by Google. It’s used to handle heterogeneous
data, scales large number of nodes and automatically han-
dling node failures5; it’s used to distribute data processing
and it’s written in java.

Hadoop Distributed File System (HDFS)6,7 was a file
system used by Hadoop to store file system Metadata and
application data separately. It has two separate servers
to store Metadata at name node and application data at
data node. It uses replication of data to protect data rather
than using RAID8. All file data are stored in more than
one data node.

According to the rapid increase in data size9, we need
to perform join operation to find hidden pattern and

Hash Semi Join MapReduce to Join Billion Records in a Reasonable Time

Indian Journal of Science and TechnologyVol 11 (18) | May 2018 | www.indjst.org 2

valuable information, but to multiple data set MapReduce
has some limitations to perform join operations because
MapReduce used Network connection to sent entire
datasets among nodes in the cluster That may cause per-
formance bottlenecks.

MapReduce isn’t designed to match or combine
information from two data sources. So that it has some
limitation for join10. Most researches studies like equi-
join it’s used data flow management for key equality
MapReduce, MapReduce merge applies some changes in
MapReduce to get join prediction result by adding merge
phase and programmer must write the code for distribu-
tion of records.

Researchers over 30 past years are using semi-join and
hash tables in the database area, to do join operations on
massive data sets9. However, MapReduce is designed to
process single large dataset as input so that isn’t have any
data structure and database design like indexes or filters
or query execution plan as in the database11. Join can be
two ways for joining two tables or Multiway12 for joining
more than two tables.

Semi join between two tables returns all possible rows
matches found in the first table and in the second table to
do join as in the database13. Hash semi-join in the data-
base is used to return all matched records from two tables
only once as if matched records are repeated it gets only
the first one matched. It has two types hash left semi-join
it’s used when the IN table is smaller than the FROM
table and hash right semi-join it used when the IN table is
larger than the FROM table13.

In this paper, to improve join performance in Hadoop
we using hash tables with semi-join MapReduce. We
apply hash semi-join techniques only for two data sets.
We discuss and compare semi join MapReduce and per
split semi join with our new algorithm14,15. Semi join
MapReduce solved the problem for deleting usefulness
tuples as early as possible compared to others MapReduce
join techniques14. Our new techniques are to invert the
second phase at semi-join that’s used map function and
it’s used in it () and close () functions with every records
in search that takes more time to save the output from the
first phase that contain all join key in hash-table and dis-
tribute the second table via distributed cache to go throw
and find matched records to write it in hash table to get
new output file has all joined records data from the sec-
ond table matched with the join key then using broadcast
join to get final join result. So that we can do join between
two large tables and deleting all unused records to join

operation to increase performance and reduce communi-
cation overhead.

The rest of this paper is organized as follow: Section
2 discuss semi-join and per-split semi-join algorithm
related to our work. Section 3 discuss MapReduce join
problem definition and how can our new algorithm solve
this problem, new proposed hash semi join architec-
ture, implementation, cost model for this algorithm and
pseudo code for hash semi join algorithm. Section 4 we
present our experimental results and performance analy-
sis. Finally, we conclude and discuss the conclusion and
future work.

2. Previous Work
Semi join MapReduce and per-split semi-join is a two-
way join algorithm was firstly proposed in14 these two
algorithms are used when the size of two tables are
extremely large.

2.1 Semi Joins
Semi Join MapReduce algorithm14,15 often, used when the
size of one data sets is extremely larger than the other.
Multiple records will not be used for join so that deleting
these usefulness records will affect the network workload
and size of datasets to join. Semi join does join rapidly
than map side join and reduce side join algorithms with
huge data size. We use order table has a foreign key to
doing join O_CUSTKEY and use customer table has a
primary key to doing join C_CUSTKEY.

Phase 1:
Using the map and reduce function. First map phase used
to generate key-value pair from the large table whose join
key is foreign key not unique key at table structure (order
table) whose size of table data are 400 million records.
So we use the map function to generate join key and use
reduce function to eliminate redundant records from join
operation. Map function used to generate key-value pair
from every record in the table but it generate only key
from join key with no value and save this value in HDFS
then we can sort this data that’s be too small compared
to all table records. Reduce the function used to group
all records equally together and then eliminate redundant
records then output file 1 that contain all join key from
the first table this file is small enough to fit in memory.
Using a hash table to save join key in memory isn’t any

Marwa Hussien Mohamed, Mohamed Helmy Khafagy and Mohamed Hasan Ibrahim

Indian Journal of Science and Technology 3Vol 11 (18) | May 2018 | www.indjst.org

cost and no overhead on network load and memory size.
Output 1 Table after eliminating redundant records con-
tain all customer ID do all orders table records from 200
million records in the customer table originally.

Phase 2:
The output file from phase 1 size it’s small enough to fit in
memory and customer table contain 200 million custom-
ers broadcast all records in this file using HDFS.

We using map function to get all key-value pair from
customer table and store result in HDFS and partition
this table according to number of splits and if we found
key from first table equally to key from customer table we
write in new HDFS output file all customer data records
this file with all records has join key with customer data
applying order table. Every time we check join key table
we use in it () and close () function for every record that’s
got more time and we do this with every time iterate
throw second table splits.

Phase 3:
Using broadcast join as map only phase. We load first
table from HDFS with data about 400 million records and
use map function to generate key value pair and using
hash table to load the output file 2 from second phase
and join records from two tables and generate final out-
put files has 400 million joined records. Last phase cost by
using a hash table and using the map function to generate
key value pair.

This algorithm problems are extra scan for the large
table orders and every time needed to use map function
we do key value pair and using init () and close () func-
tion and for the second phase we go throw every record in
second table to find matching key to doing join with join
key output file from the first phase16.

2.2 Per Split Semi-Join
Per-split semi-join algorithm14,15 used to join tables one
of these two tables are extremely large than the other and
it enhance the problem for that may be one of unique
join key from the first phase in semi-join not joined by
a record in the second table also it has three phases to do
join but second phase are highly cost.

Also we use order table has a foreign key to doing join
O_CUSTKEY and use customer table has a primary key
to doing join C_CUSTKEY.

Phase 1:
Using map function only to generate key/value pair from
order table that’s have 400 million records and generate
number of files contain all join key with no value and
without elimination of redundant records output files and
we save this file into HDFS.

Phase 2:
Using a full MapReduce job it’s used to load customer table
with 200 million record into main memory and using map
to generate key value pair and using hash table to iterate
throw output file from phase1 which saved in HDFS we
partition customer table into number of splits. We iterate
with every part of output file 1 with every split of second
table if a join key is matched we output this record and
adding a tag to table name, we use in it () and close ()
function that takes long time for every record and then
using reduce function to group all records joined from
output phase 1 with customer table. Output file 2 size are
larger than output 2 from semi-join phase 2 because we
aren’t eliminating redundant records like semi-join.

Phase 3:
Using map only function we load orders table from HDFS
and do key value pair for all records and do direct join
according to the table tag number added to the output
file from the second phase. Output files with 400 million
joined records. Per split semi-join third phase are low
cost than third phase in semi-join algorithm17 and second
phase are used to join every part of first table with the
same part of the first table that’s makes direct join in third
phase are more easily and second phase are highly cost
and has more time in small data size.

3. Hash Semi-Join MapReduce
Hash semi-join algorithm used to solve the problem of
joining two tables one of them has more records useful-
ness in join and we need to delete this records as early
as possible to increase running performance and reduce
network load and bottleneck when we need to buffer mil-
lion and billion of records at reduce phase .

3.1 Problem Definition
In this work, we focus on two-way join MapReduce only.
We need to solve the problem of semi-join MapReduce

Hash Semi Join MapReduce to Join Billion Records in a Reasonable Time

Indian Journal of Science and TechnologyVol 11 (18) | May 2018 | www.indjst.org 4

and presplit semi-join MapReduce14, this type of join
algorithms joining only two large tables it depends on
deleting unused records as early as possible to reduce
bottlenecks, but this algorithms suffer from scanning for
the large table more time and may be filtered records will
not join with another table. We use hash table in the first
phase after filtering join key by using first map and reduce
function applied to the first table, we save output from
this step directly to hash tables and load the second table
via distributed cache to solve the problem of semi-join
and presplit semi-join to use map function the needs to
init and close function for every records while matching
the join key. Also by using hash tables we get high perfor-
mance18.

3.2 Hash Semi-Join Architecture
Hash semi-join reduce in cost for the second phase in
semi-join and per split semi-join by using hash table
based aggregation and no need to use map function to
join records in the second phase by sending output result
from first MapReduce phase to be saved directly to hash
table in memory using read and write function to file
only. Figure 1 shows hash-Semi-Join architecture. Hash
semi-join has two phases the first phase are a MapReduce
job and the second phase are map only job.

Phase 1:
We use order table and customer table to do join by using
customer key. We load order table in HDFS and do map
function to generate key value pair but this map function
only get the key without any value and then using reduce
function to eliminate redundant records from output
files. order table originally size 28,192,375,890 byte 400
million records and after using map function HDFS save
output records 1,288,970 byte directly into hash table and
we load into HDFS second table customer and loop throw
hash table and customer table if join key matched we
write records data to output file 2 this file has all customer
data were joined with orders table.

Phase 2:
We load firstly order table and by using map function to
generate key value and by using broadcast join to load
output file from first phase and do direct join to get joined
records with size 45,387,838,750 bytes has 400 million
joined records. Hash semi-join algorithm depends on the
first phase on main memory size to save output file which
contain joined records but using main memory isn’t any
effect on join result because output joined records file are
small to fit in memory of memory .semi join and presplit
semi-join algorithms highly cost in second phase. Hash
semi-join increase in performance and reduce cost.

Figure 1. Hussein: Hash-semi-join architecture.

Marwa Hussien Mohamed, Mohamed Helmy Khafagy and Mohamed Hasan Ibrahim

Indian Journal of Science and Technology 5Vol 11 (18) | May 2018 | www.indjst.org

3.3 Hash Semi-Join Example
Hash semi-join example is shown in Figure 2. If we have
order table with data OID, CID and type and customer
table CID and name firstly we load two tables into HDFS
Hadoop Distributed File System we get order table and
apply map function to get key join in this table we get all
CID customer whose do orders then apply reduce func-
tion to eliminate redundant customer ID then we save all
data to hash table secondly we load customer table via
distributed cache and iterate by using hash table throw
customer if we find CID we write all customer data in
this table then save this file in HDFS and apply broadcast
join to load order table and do map function to make join
between new table and orders data by adding all customer
data finally we get joined output records.

3.4 Hash Semi-Join Cost Model
Hash semi-join cost for join two tables (customer table
and order table). We copy our tables from local disk using
copy from local command to copy data to HDFS this step
on master node. When we start running algorithm name
node sends parts of data to all data nodes to start first job

mappers to apply map function on the first table to read
data locally. We have to types of I/O: local read it’s read-
ing data from local mode and streaming I/O it’s reading
data from different nodes and from TPC/IP inner process
communication. Every join key records are customer ID
numbers sizes are small to get a load in memory. Size of
million up to billion records IDs it’s may be megabytes or
more. So that size of hash semi-join first part is the size
of the first table (orders) join keys without repeated IDs.

Output 1 size equally the size of all CID at orders table
without repeated customers. Hash semi-join phase 1 cost:
Local read: size (order) + size (customer: local I/O read),
Data transfer: size (orders) + size (customers), Local
write: size (join keys without repeated)

Then we save output files into hash table and reading
customer table for I/O local cost to loop for join key with
hash table if we find matched we using hash table to write
all customer data this are saved in memory and saved out-
put results to HDFS. We have all customer data needed
for join records. Output 2 size equally the size of all CID
at orders table without repeated customers with full data.
Phase 1 part 2 costs: Local read: size (output 1: streaming
I/O read) + size (customer: Local I/O read), Data transfer:

Figure 2. Hussein: Hash-semi-join example.

Hash Semi Join MapReduce to Join Billion Records in a Reasonable Time

Indian Journal of Science and TechnologyVol 11 (18) | May 2018 | www.indjst.org 6

size (customers) + hash table, Local write: size (join keys
without repeated with full data) using a hash table.

In this part we use a hash table to save customer join
key data in memory firstly and then save all results to
HDFS. Using hash tables reduce in time and give high
performance than semi–join while we read and write
directly and reduce network bottleneck when we need to
write every output records to output file via HDFS but we
only send final result only.

Hash semi-join phase 2 costs we only load order data
from HDFS and using distributed cache with output 2
from the first phase and do join operation by adding all
customer data to order the table. So that we get final join
result. Phase 2 costs: Local read: size (output 2) + size
(orders) for each map, Data transfer: size (output 2) + size
(orders), Local writes: size (joined records at customer
table) + size (orders table).

Every time we get new output result we must repli-
cate this data to different nodes through the network to
support fault tolerance and balancing this cost must be
included in total join cost.

4. Experimental Results
We present experimental results of our implementation.
We have 30 cluster machines one of them master node
(name-node) and 29 cluster machines are slave node
(data node). Cluster configuration consists of Intel Core
I5 2.4 GHz processor, 4 GB memory for every node, 500
GB SATA disk and operating system Ubuntu 13.14 Linux
with Apache Hadoop release 1.2.1.

4.1 Dataset
We use the TPC-H benchmark19-23 dataset to evaluate our
implementation with original Hadoop. We use two table
customers and orders to join according to join key where
O_CUSTKEY = C_CUSTKEY where customer table has
50 million record and table orders has 100 million records

as the start size for our experiment. We use SJ as abbre-
viation for semi-join, PSJ as abbreviation for per split
semi-join and HSJ as abbreviation for hash semi-join. We
apply three experimental results varying in data size to
show algorithm performance.

4.2 Experiment 1
We present execution time performance for every join
algorithm when the size of the customer table are fixed
with 100 million records and increasing the size of order
table by 100 million every time. Table 1 shows running
time with every algorithm in seconds and Figure 3 shows
performance for three algorithms where X-axis show
time in seconds and Y-axis show size of two tables per
split semi-join has worst time because of highly cost of
second phase by partitioning order join key into num-
ber of files and keep redundant records for records apply
orders. Semi join has more than hash semi-join accord-
ing to using a second phase to find matched records from
order table with join key customer table.

Hash semi-join algorithm has the best time perfor-
mance at all in increasing the size of data and reduce in
time by deleting the second phase and try to use hash
table in memory to store joined customer data records
apply orders data show that all running time are increased
by 1% increasing in running time depend on tables size
and number of customer who apply orders with order
table and number of customers apply order are not fixed
in all data tables.

4.3 Experiment 2
We show join performance with every algorithm when
the size of data are increased in two tables. We apply this
experiment to show the running time when increasing
customer ID reference in order table this take time in last
phase. Figure 4 shows that running 100 million and 200
million has more time than 150 million and 300 million

Table 1. Total run time for join algorithms when data size are increased in order table by 100 million and fixed in
the customer table 100 million records

Comparison 100 and 100
million

100 and 200
million

100 and 300
million

100 and 400
million

100 and 500
million

100 and 600
million

Per-Split Semi Join 69 112 200 210 215 203
Semi Join 70 130 203 201 201 213
Hash Semi Join 67 102 182 181 175 176

Marwa Hussien Mohamed, Mohamed Helmy Khafagy and Mohamed Hasan Ibrahim

Indian Journal of Science and Technology 7Vol 11 (18) | May 2018 | www.indjst.org

because last phase in all type of join algorithm get more
time to add customer data to order table to get output
joined records and size of customer apply orders are not
equally in all tables it’s increased in 100 million and 200
million experiment highly cost of second phase.

In semi-join and presplitsemi join algorithm but
hash semi-join isn’t affected because we reduce time by
deleting second phase Figure 4 show running time for all
algorithms total time. Table 2 shows time performance
for every join algorithm hash semi-join has best in per-
formance.

4.4 Experiment 3
We increase the size of two tables by 10 Billion records and
size of customer table by 5 Billion records. Figure 5 shows
that hash semi-join algorithm has the best time to apply
join but per split semi-join better than semi-join when we
increase the size of data by 10 Billion records this experi-
ment shows that hash semi-join and presplit semi-join are
better than semi-join in running time. Presplit semi-join
is running time increased by 12%, semi-join algorithm
time increased by 13% and hash semi-join time increased
by12% and get high performance in running time for all
experiments.

4.5 Performance Analysis
The main advantage of hash semi-join are reduced in
sorting and shuffling costs between Mappers and reduc-
ers by reducing in records sizes and sending only records
used for the join. Hash semi-join performance depends
on some properties:

Figure 3. Hussein join algorithm run time by each phase.
Figure 4. Hussein show algorithm performance when
records are increased in two tables.

Table 2. Total run time for join algorithms when data size are increased in two tables firstly the size of the
customer table and second size of the order table

Comparison 50 and 100
million

100 and 200
million

150 and 300
million

200 and 400
million

250 and 500
million

300 and 600
million

Per-Split Semi Join 160 308 226 301 221 241
Semi Join 164 326 237 258 215 228
Hash Semi Join 141 283 209 220 186 207

Figure 5. Hussein show algorithm performance
when records are increased in two tables.

Hash Semi Join MapReduce to Join Billion Records in a Reasonable Time

Indian Journal of Science and TechnologyVol 11 (18) | May 2018 | www.indjst.org 8

•	 Number of join key between two tables (when join
keys increased performance also increases other-
wise join key decreased performance decreased).

•	 Size of join key saved into hash table to match
records with the second table.

•	 Datasets number of columns is important factor
for performance.

5. Conclusion
This work shows new proposed join algorithm hash
semi-join that used hash table to join records and elimi-
nate unused records early to avoid shuffling and reduce
network load to get high performance compared with pre-
vious MapReduce join algorithms semi-join and presplit
semi-join. We run new join algorithms with various data
size to see the performance while increasing in data size
and increasing in matched records between two tables.
Our experimental result shows that our algorithm used
memory to get high performance and it’s being the best
one in running time than two others and memory size not
affect in cost because we send only records we will use to
apply join from customer table and remove other records.

In the future work we want to implement the join algo-
rithms using several datasets benchmarks and increasing
number of nodes to show performance. Implement hash
semi-join to run on multi-way join and compare perfor-
mance with others multi-way join algorithms map side
join, reduce side cascade join and reduce side one shot
join and using reusing output result using hive query lan-
guage. We can using index to increase join performance
with hash semi join.

6. References
1. Changchun Z, Lei W, Jing L. Efficient processing distributed

joins with Bloom filter using MapReduce. International
Journal of Grid and Distributed Computing. 2013 Jun;
6(3):43–58.

2. Ghemawat J, Sanjay G. MapReduce: Simplified data pro-
cessing on large clusters. Communications of the ACM
Association for Computing Machinery. 2004; 51(1):107–13.

3. Amresh K, Kiran M, Prathap BR. Verification and valida-
tion of MapReduce program model for parallel K-means
algorithm on Hadoop cluster. International Journal of
Computer Applications. 2013 May; 72(8):48–55.

4. Jeffrey D, Sanjay G. MapReduce: Simplified data processing
on large clusters. Useni Associationos di communications

of the ACM Association for Computing Machinery. 2008
Jan; 51(1):1–13.

5. Hesham HA, Mohamed HK, Ahmed MW. Comparative
study load balance algorithms for MapReduce environ-
ment. International Journal of Computer Applications.
2014; 106(18):41–50.

6. Kyong H, Yoon J. Parallel data processing with MapReduce:
A survey. SIGMOD Special Interest Group on Management
of Data. 2011 Dec; 40(4):1–10.

7. Vikas J, Sunil AJ. Join algorithms using MapReduce: A sur-
vey. International Conference on Electrical Engineering
and Computer Science; 2013 Apr. p. 40–4.

8. Ebada S, Atef G, Mohamed HK. Queue weighting load-
balancing technique for database replication in dynamic
content web sites. Proceedings of the 9th WSEAS
International Conference on Applied Computer Science;
Italy. 2009. p. 50–5.

9. Taewhi L, Kisung K, Hyoung-Joo K. Join processing
using Bloom filter in MapReduce. Proceedings of the
ACM Association for Computing Machinery Research in
Applied; 2012 Oct. p. 100–5.

10. Xiaofei Z, Lei C, Min W. Efficient multi-way theta-join
processing using MapReduce. PVLDB Proceeding Very
Large Data Bases. 2012 Aug; 5(11):1184–95. PMCid:
PMC4088276.

11. Andrew P, Erik P, Alexander R, Daniel JA, Samuel M,
Michael S. A comparison of approaches to large-scale data
analysis. SIGMOD Special Interest Group on Management
of Data. International Conference on Management of Data;
2009 Jun. p. 165–78.

12. Foto NA, Jeffrey DU. Optimizing multiway joins in a
MapReduce environment. IEEE Transactions on Knowledge
and Data Engineering. 2011 Sep; 23(9):1282–98. Crossref.

13. Philip AB, Dah-Ming WC. Using semi-joins to solve
relational queries. Journal Association for Computing
Machinery. 1981 Jan; 28(1):25–40. Crossref.

14. Spyros B, Jignesh MP, Vuk E, Jun R, Euqene JS, Yuanyuan
T. A comparison of join algorithms for log processing in
MapReduce. Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, ACM
Association for Computing Machinery; 2010 Jun. p. 975–86.

15. Duong VH, Sucha S, Phayung M. MapReduce join strate-
gies for key-value storage. International Joint Conference
on Computer Science and Software Engineering; 2014. p.
164–9.

17. Chandra J. Join algorithms using MapReduce. Publication:
Magisterarb: University of Edinburgh; 2010. p. 1–16.

18. Dawei J, Beng CO, Lei S, Sai W. The performance of
MapReduce: An in-depth study. PVLDB Proceeding Very
Large Data Bases. 2010 Sep; 3(1):472–83.

19. Tournament Players Club. 2017. www.tpc.org

https://doi.org/10.1109/TKDE.2011.47
https://doi.org/10.1145/322234.322238
www.tpc.org

Marwa Hussien Mohamed, Mohamed Helmy Khafagy and Mohamed Hasan Ibrahim

Indian Journal of Science and Technology 9Vol 11 (18) | May 2018 | www.indjst.org

20. Ebada S, Atif G, Mohamed HK. Specification and
implementation of dynamic web site benchmark in tele-
communication area. Proceedings of the 12th WSEAS
World Scientific and Engineering Academy and Society
International Conference on Computers. 2008; 12:863–86.

21. Mina SS, Mohamed HK, Samah AS. JOMR: Multi-join
optimizer technique to enhance MapReduce job. The 9th
International Conference on INFO Romantics and Systems;
2014 Sep. p. 80–6.

22. Marwah NA, Mohamed HK, Fatma AO. HOME: HiveQL
optimization in multi-session environment. Proceedings
of the 5th European Conference of Computer Science
(ECCS14); Geneva, Switzerland; 2014. p. 80–9. PMid:
24585649.

23. Hussien S, Mohamed HK, Fatma AO. JOUM: An index-
ing methodology for improving join in hive star schema.
International Journal of Scientific and Engineering
Research. 2015 Mar; 6(3):111–9.

