

Alter Computers and Information Parent University: Fayoum University Faculty: Computers and Information Department: Basic Science

Course Specification									
1- Basic Information									
Code: CSC 261	Course Title: Logic Design	Year/Level: Second year – First term							
Programme : B.Sc degree in Computer Science	Practi	re: 3 hrs/ week al: 0 hrs/ week cal: 3 hrs/ week tal: 6 hrs/ week							

2- Aims	On completion of this course the successful student will be able to:
of Course:	 Understand various numbering systems and codes Be familiar with the different logic families and differentiate between the advantages and disadvantages of each of them Understand the theorems and property of Boolean algebra which is the basis of logic design and use them to simplify any logic function Understand how to use karnaugh maps to simplify any logic function with or without do not care terms Design and analyze different combinational circuits Understand different arithmetic circuits, encoders, decoders multiplexers and demultiplexers. Study basic concepts of sequential circuits Study different types of latches and flip-flops Design and analyze sequential circuits and counters Study ripple and synchronous up / down counters Be familiar with different shift registers

3- Intended Learning Outcomes									
A- Knowledge and	On completing this course, students should have knowledge and understanding of :								
Understanding:	A3. Demonstrate the essential mathematics and physics								
	relevant to computer science								
	A4. Explain essential concepts, principles, and theories related								
	to computer science such as operating system.								
	A8. Express the main concepts of statistics, probability theory,								
	algebra and numerical analysis and their role in the								
	computing and information discipline.								
	Through the following:								
	a1) Explain how the different series within the CMOS and								
	TTL families differ from each other								

5

	a2) Define propagation, delay time, power dissipation,								
	speed-power product, and fan-out in relation to logic								
	gates								
	a3) List specific fixed-function integrated circuit devices								
	that contain the various logic gates								
	a4) Understand the operation of the NAND gate and the Nor								
	gat								
B- Intellectual Skills:	On completion of this course the successful student will be								
	able to:								
	B4. Apply solutions to a computer science problem, follow-								
	up on solution to verify it, and if necessary restrict the								
	solution methodologies upon the results.								
	B5.Discuss factors other than computational efficiency that influence the choice of algorithms, such as programming								
	influence the choice of algorithms, such as programming time, maintainability, and the use of application-specific								
	patterns in the input data.								
	B8. Identify criteria to measure and interpret the								
	appropriateness of a computer system for its current								
	deployment and future evolution.								
	Through the following:								
	b1) Add numbers in hexadecimal form								
	b2) Convert between the binary and octal numbers systems								
	b3) Express decimal numbers in binary coded decimal								
	(BCD) form								
	b4) Add BCD numbers								
	b5) Convert between the binary system and Gray code								
	b6) Interpret the American Standard Code for information								
	Interchange (ASCII)								
	b7) Use binary numbers and codes in a system application.								
C- Professional and	At the end of the course, the student will be able to:								
Practical Skills:									
	C2. Negotiate effectively with clients, other stakeholders								
	and peers.								
	C5. Analyze simple and complicated electrical circuits and								
	using electrical laws in solving problems and/or formal								
	electrical analysis methods.								
	C6.Employ the statistical, probabilistic and mathematical								
	techniques in analyzing data and interpreting experimental results.								
	Through the following:								
	c1) Solve problems sheets related to the course material								
	c2) Collect information from relevant sources and use it in								
D- General and	At the end of the course, the student will have:								
transferable Skills	In the chu of the course, the student will have.								
vi unster ubie orano	D3. Work as a member of a development team, recognizing								
	the different roles within a team and different ways of								
	organizing teams.								
	D6. Demonstrate skills in team work, team management,								
	time management and organizational skills.								
	Through the following:								

	 d1) Gradates would be able to cooperate in teams d2) Graduate would develop self-professional scientific and personal attitude towards continuous education d3) Graduate would be able to gain access to data and information from libraries and internet related to the course subject.
--	--

4-Course	1. Basic logic concepts: Logic states, number systems,
Content:	2. Boolean algebra, basic logical operations, gates and
content.	truth tables.
	3. Combinational logic: Minimization techniques,
	Multiplexers and de-Multiplexers,
	4. encoders, decoders, adders and subtractors, look-ahead
	carry,
	5. comparators, programmable logic arrays and memories,
	design with MSI,
	6. logic families, tri-state devices, CMOS and TTL logic
	interfacing.
	7. Sequential logic: Flip-flops, monostable multivibrators,
	8. latches and registers, counters, shift registers.
	9. Analog to digital conversion, digital-to-analog
	conversion, data acquisition,
	10. microprocessors.

5- Teaching and Learning Methods:	 Lectures Tutorials Computer-lab Sessions Practical lab work Class discussions Internet searches Independent Work Group projects
	 Problem-based Learning

6- Teaching and Learning Methods for handicapped students :

-

7- Student Assessment							
A-Assessment	1. Assignments and Quizzes						
Methods:	Midterm written exam						
	Oral Exam Practical exam						
	Final written exam						
B- Assessment	Midterm Examination: Week 7 or 8						
schedule:	Practical examination: Week 13						
	Oral Examination: Week 14						
	Final Examination: Week 15						

Logic Design ------ 4 /

C- Weighting	Assignments and Quizzes	0 %
of	Mid-Term Examination	16%
assessments:	Oral Examination	8%
	Practical Examination	16%
	Final-term Examination	60%
	100 %	Total

5

8- Books and	References
A- Notes:	-
B- Essential Books (Text Books):	i. Logic and Computer Design Fundamentals, 2 nd Edition, by M.M. Mano and C.R Kime published by Prentice Hall, 2007.
C- Recommended Books:	 Digital Fundamentals, 11' Edition by Thomas L. Floyd, published by Prentice Hall, 2014.
D- Periodicals, Web sites, etc	http:// www.ee .usyd.edu.au/

- Course Coordinator: Dr. Shereen Aly Taie

- Head of Department: Dr. Amira Edress

Signature:....

Date: 12-10-2016

Course Content Intended Learning Outcomes Matrix

Course Title: Logic Design

Course Code: CSC 261

Course Content		Knowledge & Understanding					tell	lec	tua	al S	Ski	lls	Professional & Practical Skills		General & Transferable Skills		
		a1	a2	a3	a4	b1b2b3b4			b4	4 b5 b6b7			c1	c2	d1	d2	d3
 Basic logic concepts: Logic states, number systems, 	1		X	x	x	x	x	x	x	x	x		х	х	x	X	x
 Boolean algebra, basic logical operations, gates and truth tables. 	2			x	x							x	Х	X	X	X	X
3. Combinational logic: Minimization techniques, Multiplexers and de-Multiplexers,	3		х		x							x	Х	Х	х	X	x
4. encoders, decoders, adders and subtractors, look-ahead carry,	4			X		x						x	Х	Х	X	X	x
5. comparators, programmable logic arrays and memories, design with MSI,	5			x									Х	X	х	X	x
 logic families, tri-state devices, CMOS and TTL logic interfacing. 	6	x											Х	X	х	Х	x
7. Sequential logic: Flip-flops, monostable multivibrators,	7:8			X									Х	Х	х	Х	x
8. latches and registers, counters, shift registers.	9			X									Х	X	Х	Х	X
9. Analog to digital conversion, digital-to-analog conversion, data acquisition,	10			X									х	X	X	Х	x
10. microprocessors	11:12			X									Х	Х	Х	Х	X

Course coordinator: Dr. Shereen Aly Taie

Head of Department: Dr. Amira edrees

Date: