

University: Fayoum University
Faculty: Computers and Information
Department: Computer Science
General Diploma

Course Specification

1- Basic Information							
Code: INF 503	Course Title: Software Engineering						
Programme : General Diploma in Computer Science	Number of units: Lecture: 2 hrs/ week Tutorial: 0 hrs/ week Practical: 2 hrs/ week						

2- Aims of	1. To understand Software Engineering.
	2. To gain basic knowledge software process and software life cycle.
Course.	3. To be able to achieve different software artifacts in different software
	development phases.

3- Intended Learning Outcomes						
A- Knowledge and	a1) Understanding software process and software evolution.					
Understanding:	a2) Recognize the different software models.					
B- Intellectual Skills:	b1) Understand difference between Software Engineering and Computer					
	Engineering.					
	b2) Understand costs of Software Engineering.					
	b3) Evaluating attributes of good software.					
C- Professional and	c1) Practicing software artifacts/documents development.					
Practical Skills:	c2) Practicing system design and system decomposition.					
	c3) Practicing requirements engineering.					
	c4) Working with CASE/UML tools.					
D- General and	d1) Practicing working in teams					
transferable Skills	d2) Attending Competitions with colleagues					

4-Course Content:

- 1. Introduction: Well-engineered software, the software process, software evolution, and software reliability.
- 2. Human factors in software engineering: Human diversity, knowledge processing, group working.
- 3. Software specification and system modeling: The software requirements document
- 4. Traditional Processes
- 5. Requirements definition and specification: Requirements specification, nonfunctional requirements definition.
- 6. Requirements validation and prototyping: The prototyping process, prototyping techniques.
- 7. Software design: Top-down design, systems design, design decomposition,
- 8. software design quality
- 9. Software Testing Methods
- 10. Software Reuse
- 11. Agile Methods

5- Teaching and Learning Methods:

- 1. Lectures
- 2. Computer-lab Sessions
- 3. Practical lab work
- 4. Class discussions
- 5. Internet searches
- 6. Group projects

6- Teaching and Learning Methods for handicapped students:

7- Student Assessment A- Assessment Methods: 1. Assignments and Quizzes 2. Midterm written exam 3. Oral exam 4. Practical exam 5. Final written exam **B- Assessment schedule:** Midterm Examination: Week 6 Practical examination: Week 12 Oral Examination: Week 12 Final Examination: Week 15 Assignments: 15% C- Weighting of assessments: Mid-Term Examination: 15% Oral Examination: 0% Practical Examination: 10% Final-term Examination: 60%

8- Books and References	
A- Notes:	Carefully selected, well reviewed in core presentations
B- Essential Books (Text Books):	■ Ian Sommerville, "Software Engineering", Addison-Wesley publisher.

Software Engineering	3 / 4
C- Recommended Books:	■ Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: "Design Patterns", Addison-Wesley.
	 Grady Booch, James Rumbaugh, Ivar Jacobson, "The Unified Modeling Language User Guide", Addison Wesley.
	 Bernd Bruegge, Allen Dutiot: "Object oriented Software engineering using UML, Patterns and Java", Prentice Hall.
D- Periodicals, Web sites,	-

Course Professor:	Donordmond Hoods
Course r rolessor:	Department Head:

Software Engineering	4	1	1
Boftware Engineering		/ -	1

Course Content Intended Learning Outcomes Matrix

Course Title: Software Engineering Course Code INF 503

Course Code IIVI 505												
Course Content		Knowledge & Understanding		Intellectual Skills			Professional & Practical Skills				General & Transferable Skills	
		a1	a2	b1	b2	b 3	c1	c2	c3	c4	d1	d2
1. Introduction: Well-engineered software, the software	1	37		37		v	37				v	v
process, software evolution, and software reliability.		X		X		X	X				X	X
2. Human factors in software engineering: Human	2	X				v					X	37
diversity, knowledge processing, group working.		Λ				X				to.	А	X
3. Software specification and system modeling: The	3											
software requirements document, requirements		X	X				X		X		X	X
evolution, system contexts,												
4. Traditional Processes.	4	X	X						X		X	X
5. Requirements definition and specification:	5											
Requirements specification, nonfunctional		X			X				X		X	X
requirements definition.												
6. Requirements validation and prototyping: The	6	X							X		X	X
prototyping process, prototyping techniques.		Λ			o .				Λ		Λ	Α
7. Software design: Top-down design, systems design,	8	X	X					X			X	X
design decomposition,	,	Δ.	Λ					Λ		,	Λ	Λ
8. software design quality,	9				X	X					X	X
9. Software Testing Methods	10	X	X				X	X		X	X	X
10. Software Reuse	11	X	X				X				X	X
11. Agile Methods	12	X	X				X				X	X