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Antimicrobial potential of consolidation
polymers loaded with biological copper
nanoparticles
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Abstract

Background: Biodeterioration of historic monuments and stone works by microorganisms takes place as a result of
biofilm production and secretion of organic compounds that negatively affect on the stone matrix.

Methods: Copper nanoparticles (CuNPs) were prepared biologically using the headspace gases generated by the
bacterial culture Escherichia coli Z1. The antimicrobial activity of CuNPs was evaluated against the bacterial strains
Bacillus subtilis, Micrococcus luteus, Streptomyces parvulus, Escherichia coli, Pseudomonas aeruginosa as well as some
fungal strains Aspergillus niger, Aspergillus flavus, Penicillium chrysogenum, Fusarium solani and Alternaria solani.

Results: Biological CuNPs demonstrated antibacterial and antifungal activities higher than those of the untreated copper
sulfate. At the same time, limestone and sandstone blocks treated with consolidation polymers functionalized with CuNPs
recorded apparent antimicrobial activity against E. coli, S. parvulus and B. subtilis in addition to an improvement in the
physical and mechanical characters of the treated stones. Furthermore, the elemental composition of CuNPs was
elucidated using electron dispersive x-ray system connected with the scanning electron microscope.

Conclusion: Consolidation polymers impregnated with CuNPs could be used to restrain microbial deterioration in
addition to the refinement of physico-mechanical behavior of the historic stones.
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Background
Nanoparticles demonstrate vast array of properties such
as optical, electrical, catalytic, magnetic and biological
activities which are diverged from those of the original
constituents [1, 2]. The emergence of nanotechnology in
the last decade offers occasions for exploring the
antimicrobial effect of metal nanoparticles. Some of the
biological properties of nanoparticles of various metals
have been explored by assaying their antimicrobial sus-
ceptibilities. It has been reported that nanoparticles of
Ag, Zn, Cu and Au exhibit a wide spectrum of anti-
microbial activity against different bacterial [3–5] and
fungal species [6–9].
Copper nanoparticles were reported to have anti-

microbial activity against wide spectrum of bacteria

including Micrococcus luteus, Klebsiella pneumoniae,
Escherichia coli, Pseudomonas aeruginosa, Staphylococ-
cus aureus, Bacillus subtilis, [10–12]. Moreover, CuNPs
have been shown to suppress vegetative growth of some
fungal species such as Aspergillus flavus, Aspergillus
niger, Alternaria alternata, Fusarium solani, Penicillium
chrysogenum and Candida albicans [13, 14].
Elevated levels of heavy metals represent a potential

stimulus for metal tolerant bacteria that regularly pos-
sess specific metal resistance mechanisms. One of these
mechanisms is the intracellular or extracellular trans-
formation of metal ions into insoluble metal particles
[15, 16]. The intracellular approach consists of trans-
porting metal ions into the bacterial cell where they are
transformed into nanoparticles while the extracellular
process involves the trapping of metal ions on the cell
surface as metal nanoparticles [17, 18]. Moreover, bac-
teria can release certain metabolites into their micro-
environment that can transform metal ions into less
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soluble metal particles [19]. Synthesis of metal nanopar-
ticles through bacteria is supported by the fact that the
generated particles are environmentally safe and have el-
evated chemical reactivity [20].
Microorganisms can initiate and accelerate some geo-

chemical reactions leading to biodeterioration of historic
monuments [21]. The biodeterioration of archeological
stones occurs as a consequence of the intrusion of mi-
croorganisms into the components of the mineral lattice
[22]. The capability of microbial cells to inhabit stone
surface was attributed to numerous aspects such as min-
eral composition, surface texture, moisture content, pH
and nutrient accessibility [23]. In order to protect the
archeological artifacts against microorganisms, different
inorganic materials such as titanium dioxide and Ag-
doped titanium dioxide have been used as antifouling
agent by dispersing them in consolidation polymers.
[24, 25]. Thus the aim of the present study was to in-
vestigate the antimicrobial potentiality of CuNPs syn-
thesized biologically by the bacterial strain Escherichia
coli Z1 and its application for the fortification of
archaeological stones against microbial inhabitation.

Methods
Consolidation polymers and stone samples
In this study, two consolidation polymers were utilized.
The first is Primal AC33 polymer (AC; Dow Chemical
Co., USA) which comprises of methylacrylate and ethyl-
methacrylate. The other one is silicon polymer (S;
Wacker BS 1001, Wacker Chemei AG, Germany) that is
consisting of silane/siloxane emulsion. Sandstone and
limestone samples were used in this study. The physical
and mechanical properties of the tested stones including
bulk density, water absorption, porosity, compressive
strength and tensile strength were characterized before
and after treating them with the functionalized polymers
according to Essa and Khallaf [19].

Preparation of the Cu-particles
A stock solution of copper sulfate was prepared by dis-
solving 200 mg of CuSO4 in 200 mL deionized distilled
H2O. Different concentrations of CuSO4 solutions (50,
100, 150, 200, 250 μg/mL) were prepared from stock so-
lution. One hundred milliliter of each concentration was
exposed to the culture biogases of the bacterial strain
Escherichia coli Z1 [26] for 60 min in aerobic bioreactor
at 30 °C as described by Essa et al. [27]. Bacterial growth
was monitored by measuring the optical density at
600 nm. The produced colloidal solution of each con-
centration was subjected for ultra-speed centrifugation
at 100,000 rpm for 30 min. The collected Cu-particles
was suspended in 10 mL deionized distilled H2O and re-
centrifuged at 100,000 rpm for 30 min. This step was re-
peated three times and the collected Cu-particles were

suspended in 1 mL dd H2O to assay the antimicrobial
activities. Another set of the Cu-particles was suspended
in the consolidation polymers at 150 μg/mL for stone
treatments.

Antibacterial activity of the Cu-particles
The antibacterial activity of copper particles was assayed
against Bacillus subtilis, Micrococcus luteus, Streptomy-
ces parvulus, Escherichia coli Z1 and Pseudomonas
aeruginosa. Twenty five milliliter of nutrient broth con-
taining various doses of Cu-particles (50, 100, 150, 200
and 250 μg/mL) were inoculated with 1 mL of a fresh
culture of each bacterial strain (O.D = 0.6). After incuba-
tion for 48 h at 30 °C, the bacterial growth was moni-
tored spectrophotometrically by measuring the optical
density at 600 nm. At the same time, the antibacterial
properties of the Cu-particles and CuSO4 were measured
using the modified agar well diffusion method of Perez
et al., [28]. Nutrient agar plates were inoculated with the
different bacterial strains. Once the agar was solidified, it
was punched with 8 mm diameter wells and filled with
25 μL of 100 μL/mL CuSO4 and Cu-particles. The ex-
periment was repeated three times with three replicates
for each treatment and diameters of the inhibition zones
were measured after 24 h incubation at 30 °C. Strepto-
mycin (1000 μg/mL) was used as a positive control.

Antifungal activity of the Cu-particles
The activity of Cu-particles and CuSO4 was measured
against Aspergillus niger, Aspergillus flavus, Penicillium
chrysogenum, Fusarium solani and Alternaria solani.
These strains were provided by the City of Science &
Technology, Egypt. Each fungal strain was grown on
potato dextrose agar (PDA) slant and incubated at 25 ±
2 °C for 5 days. Three milliliter sterile distilled water was
added to each fungal slant and the fungal spore concen-
tration was determined by haemocytometer. One hun-
dred milliliter PDA containing various Cu-particles or
CuSO4 levels (50, 100, 150, 200 and 250 μg/mL) was in-
oculated with the fungal spore suspensions (106 spore/
mL). After incubation at 25 ± 2 °C for 5 days the cultures
were filtered through pre-weighed Whatman No.1 filter
paper and the filter paper with fungal biomass was dried
at 70 °C until constant weight. At the same time antifun-
gal activity of Cu-particles and CuSO4 was evaluated
using fungal growth inhibition assay as described by
Fiori et al., [29] with some modification. The Cu-
particles and CuSO4 were mixed with molten PDA to
provide desired concentration (200 μL/mL) and 8 mm
diameter disc of each fungal strain was added to the cen-
ter of PDA plates. After incubation at 25 ± 2 °C for 72 h,
colony diameter was measured. Nystatin (300 μg/mL)
was used as a positive control.
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Treatment of stone blocks with Cu-particles based on
polymers
Cu-particles were combined with the consolidation poly-
mers at the concentration 150 μg/mL. The functional-
ized polymers were used to coat the external surfaces of
stone blocks and were left 7 days at room temperature
for complete drying.

Antimicrobial activity of the treated stones
The antibacterial activity of the treated stones was
assayed according to Essa and Khallaf [19]. One surface
of the coated stones was submerged in the bacterial cul-
ture (1.0 × 106 cell/mL) for 2 h then they were incubated
at 30 °C for 24 h. After that the treated stones were
dipped into 10 mL 0.85% NaCl solution for 1 h. One
milliliter of the washing solution was diluted 100 times
and 0.1 mL of diluted solutions was plated on NA. After
incubation at 30 °C for 24 h the bacterial colonies were
counted. Untreated stone samples were used as refer-
ence. The experiment was repeated three times with
three replicates for each treatment.

SEM and EDX of the composite Cu-particles based on
polymers
The coated surfaces of the stones were analyzed using
scanning electron microscope (JEOL JSM-5410, Japan)
meanwhile the chemical analysis of the treated polymers
were studied using Electron Dispersive X-ray system
connected with the scanning electron microscope.

Statistical methods
The resulted data were tested by using the ANOVA test
for significance. Means were compared by least signifi-
cant differences (LSD) test at levels P <0.05 and P <0.01.
All statistical tests were carried out using SPSS (v. 16.0)
software.

Results
Antimicrobial activities of the Cu-particles
As a result of pumping the biogenic volatiles of the bac-
terial strain Escherichia coli Z1 in the copper sulfate so-
lution for short exposure time (60 min), a light blue
colloidal solution of copper was obtained. The antibac-
terial potentiality of the collected Cu-particles was dem-
onstrated at different concentrations. Results in Fig. 1a
showed a suppression of the bacterial growth at various
levels depending on Cu-particles concentrations. There
was no bacterial growth at the concentration 150 μg/mL
or above while at 100 μg/mL the percentage of growth
reduction reached 94.7 % for E. coli, 92.4 % for M.
luteus, 90.9 % for S. parvulus, and 95.5 % for B. subtilis.
At the same time, P. aeruginosa demonstrated a clear
tolerance against high concentrations of Cu-particles
where the percentage growth inhibition was 69.6 % at

150 μg/mL and 79.5 % at 200 μg/mL. In order to con-
firm the antibacterial activity of Cu-particles in compari-
son with untreated copper sulfate, another experiment
was conducted where the diameter of the inhibition
zones was measured. The obtained results (Table 1 and
Fig. 2) showed an increase of the antibacterial activity of
Cu-particles compared to CuSO4. The maximum inhib-
ition zones were recorded with Cu-particles (150 μg/
mL) against E. coli Z1 (38 mm) and S. parvulus
(33 mm) while the lowest value was recorded with P.
aeruginosa (16 mm).
Regarding the antifungal activity of the Cu-particles,

data in Fig. 1b showed a remarkable growth inhibition of
A. flavus, A. niger, P. chrysogenum, F. solani and A.
solani. The fungal growth was completely disappeared at
the concentration 250 μg/mL while at 200 μg/mL the re-
corded percentage of the inhibition was 95.7 % for A.
niger, 95.2 % for F. solani and 97.4 % for A. solani. At
the same time, data in Table 1 and Fig. 2 demonstrated
the antifungal activity of Cu-particles in comparison to
CuSO4. Generally, the antifungal activities of copper

Fig. 1 Antimicrobial activity of different concentrations of CuNPs
against bacteria (a) and fungi (b). The bacterial growth was monitored
as culture optical density (OD600) while the fungal growth was assayed
as biomass dry weight. Data are the means of five replication ± standard
errors. Means were compared by least significant differences (LSD) test
at levels P <0.05 and P <0.01
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were enhanced by increasing their concentration and
Cu-particles recorded higher activities than those of
CuSO4. The maximum growth reduction was recorded
at 200 μg/mL of Cu-particles against A. flavus (67.7 %)
and F. solani (64.3 %) while the lowest growth inhibition
was recognized with A. niger (60.7 %).

Antimicrobial activity of the stones treated with Cu/
polymer composites
Although elevated concentrations of Cu-particles dem-
onstrated superior antimicrobial potentialities, silicon
and acrylic polymers were functionalized with 150 μg/
mL of Cu-particles in order to minimize color change of
the treated stones. Data in Table 2 showed the antibac-
terial activities of the treated stones against E. coli, S.
parvulus and B. subtilis. The treated sandstone blocks
recorded a clear reduction in the percentage of the bac-
terial cell recovery; 90.1 & 89.1 % for E. coli, 95.2 &
92.0 % for S. parvulus and 95.3 & 94.8 % for B. subtilis
with the functionalized silicon and acrylic polymers, re-
spectively. At the same time, the treated limestone
blocks demonstrated a clear suppression in the percent-
age of cell recovery of E. coli (93.1 & 86.8 %), S. parvulus
(93.4 & 95.2 %) and B. subtilis (93.1 & 95.0 %) for the
functionalized silicon and acrylic polymers, respectively.

Physical and mechanical properties of the treated stones
Results in Table 3 demonstrated a clear improvement in
the physical and mechanical properties of the tested
stones as a result of the application of the consolidation
polymers. Silicon and acrylic polymers showed an

increase in the percentage of bulk density, compressive
strength and tensile strength of the treated stones.
Meanwhile the water absorption capacity and porosity of
the treated stones were sharply reduced as a result of
using the consolidation polymers.

SEM & EDX analysis of the composite Cu-particles based
on polymers
The current study Fig. 3 showed the analysis of the
treated and untreated polymers with composite copper
structures by scanning electron microscope. In case of
the functionalized polymers, tiny particles (10–50 nm in
diameter) were identified while these particles were ab-
sent in the un-functionalized polymers. At the same
time, the EDX analysis of these minute structures
showed the presence of the elemental copper in the
treated silicon and acrylic polymers in addition to oxy-
gen, carbon, sulfur, silicon, potassium, chloride and cal-
cium elements. Furthermore, the EDX analysis of the
un-functionalized polymers showed the presence of car-
bon, silicon and oxygen elements with the silicon poly-
mer while the peaks of carbon, oxygen, silicon, chloride,
calcium and aluminum peaks were recognized in case of
the acrylic polymer.

Discussion
In our previous study [27], the capability of some bacter-
ial strains for the precipitation of various metal ions out
of their solutions was recorded using the culture biogas.
In the present work, Cu-particles were prepared bio-
logically via exposing the copper ions to the biogenic

Table 1 Antimicrobial activity of Cu-particles and CuSO4

Bacterial strains Inhibition zone (mm)

Escherichia coli Pseudomonas aeruginosa Micrococcus luteus Streptomyces parvulus Bacillus subtilis

Streptomycin (0.1 mg/mL) 30 ± 1 28 ± 2 25 ± 2 31 ± 1 27 ± 2

CuSO4 (100 μg/mL) 31 ± 2** 8 ± 2** 17 ± 1** 21 ± 2* 13 ± 1*

CuSO4 (150 μg/mL) 34 ± 1* 9 ± 1** 21 ± 2* 25 ± 1** 18 ± 2**

Cu-particles (100 μg/mL) 37 ± 1** 11 ± 1** 23 ± 1** 24 ± 2* 21 ± 2**

Cu-particles (150 μg/mL) 38 ± 2** 16 ± 2* 29 ± 1** 33 ± 2** 29 ± 1**

Fungal strains Radial diameter (mm)

Aspergillus niger Aspergillus flavus Penicillium chrysogenum Fusarium solani Alternaria solani

Nystatin (0.3 mg/mL) 13 ± 1 11 ± 2 16 ± 2 12 ± 2 18 ± 1

Without copper 28 ± 1 31 ± 1 27 ± 1 28 ± 1 33 ± 1

CuSO4 (150 μg/mL) 19 ± 2* 17 ± 1** 16 ± 1* 21 ± 1** 20 ± 2*

CuSO4 (200 μg/mL) 17 ± 2** 14 ± 1* 13 ± 1** 15 ± 1* 17 ± 2**

Cu-particles (150 μg/mL) 13 ± 1** 11 ± 1** 13 ± 2* 14 ± 1** 15 ± 1**

Cu-particles (200 μg/mL) 11 ± 1* 10 ± 1** 10 ± 2** 10 ± 1** 12 ± 1*

Statistical significance of differences compared to control (without copper): *, significant at P < 0.05; **, significant at P < 0.01
Agar well diffusion method was used to assay antibacterial activity meanwhile antifungal activity was measured using fungal growth inhibition assay. The values
are means of three replicates ± standard error
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volatiles released during the aerobic growth of Escheri-
chia coli Z1. One of the main constitutes of these gases
is ammonia that is responsible for the transformation of
copper ions into nitrogen-based copper particles [30].
The existence of ammonia in bacterial biogas is
mainly attributed to the catabolic reactions of some
organic matter [31].
At minor concentration of ammonia, the aqueous cop-

per sulfate solution produces copper hydroxide while

high ammonia levels induces the formation of diammine
copper (II) complex [Cu(NH3)2]

+ [27]. In fact, the alter-
ation of the copper ions into colloidal copper particles is
correlated with the exposure time. At short exposure
time, minute copper particles (10–50 nm) were formed
as showed in the SEM analysis. The EDX analysis of the
copper structures clarified the existence of sulfur that
could be attributed to the incidence of volatile orga-
nothiol compounds in the bacterial biogas [32].

Table 2 Bacterial cell recovery from sandstone and limestone blocks treated with silicon (S) and acrylic (AC) polymers impregnated
with copper nanoparticles

Bacterial strains Bacterial cell number (x104 CFU/ml)

Control Limestone blocks Sandstone blocks

S/CuNPs AC/CuNPs S/CuNPs AC/CuNPs

Escherichia coli 75.8 ± 0.9 5.2 ± 0.3** 9.9 ± 0.4** 7.5 ± 0.6* 8.3 ± 0.3**

Streptomyces parvulus 95.3 ± 0.7 6.3 ± 0.5* 4.5 ± 0.2** 4.6 ± 0.4** 7.6 ± 0.6**

Bacillus subtilis 84.7 ± 0.6 5.8 ± 0.6** 4.2 ± 0.3** 3.9 ± 0.3** 4.4 ± 0.1**

Statistical significance of differences compared to untreated stone samples: *, significant at P < 0.05; **, significant at P < 0.01

Fig. 2 Antimicrobial activity of the different copper forms against (a) Escherichia coli Z1, (b) Streptomyces parvulus and (c) Aspergillus flavus where
(I) refers to CuSO4 and (II) refers to CuNPs. Antibacterial activity of Cu-particles and CuSO4 was carried out at the concentration 100 μg/mL while
antifungal activity was assayed at the concentration 200 μg/mL
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This study clarified a marked antimicrobial efficacy of
CuNPs against various bacterial and fungal species. The
biocidal activity of CuNPs could be attributed to the ef-
fect of the CuNPs and/or the copper ions discharged
from CuNPs. Because of the great surface area of the
nanoparticles, it could be tightly adsorbed onto the sur-
face of the microbial cells resulting in; i) disruption of
cell permeability and release of integral components [33],
ii) denaturing of some functional biomolecules [10, 13],
iii) induction of oxidative damage to the microbial cells.
However, some studies have reported that the liberated
Cu2+ is the motivating force behind the antimicrobial
properties of polymers containing Cu-nanocomposites

[2, 34]. At the same time, the discharged copper ions
might be moved inside the microbial cells or attached
to their outer surfaces resulting in cell apoptosis via
protein denaturation and disruption of cell membrane
[35, 36]. Obviously, nonspecific mode of action of Cu2+

or CuNPs against bacteria and fungi makes them per-
fect antimicrobial agents with low possibility of devel-
oping microbial resistance [4, 33].
In the current study, the silicon and acrylic polymers

that were loaded with the copper nanoparticles showed
a positive influence on the treated stones through sup-
pressing the growth of tested bacterial strains at various
levels. At the same time, the antimicrobial activity of the

Table 3 Physical and mechanical properties of sandstone and limestone samples treated with the functionalized silicone (S) and
acrylic (AC) polymers

Physical and mechanical
properties

Sandstone Limestone

Untreated stones AC/CuNPs S/CuNPs Untreated stones AC/CuNPs S/CuNPs

Bulk Density (g/cm3) 1.6 ± 0.3 1.9 ± 0.4* 1.8 ± 0.2 1.9 ± 0.3* 2.2 ± 0.2** 2.1 ± 0.3*

Water Absorption (%) 19.8 ± 1.9 14.3 ± 1.7* 3.6 ± 0.4** 8.4 ± 1.1** 6.4 ± 0.5** 2.3 ± 0.2**

Porosity (%) 26.3 ± 2.5 18.7 ± 2.2* 4.3 ± 0.3** 15.6 ± 1.5* 9.7 ± 0.8** 4.4 ± 0.4**

Compressive strength (MPa) 19.8 ± 1.6 28.3 ± 1.9** 26.9 ± 2.7** 26.9 ± 2.2** 39.8 ± 2.7** 32.5 ± 1.7**

Tensile Strength (MPa) 3.2 ± 0.6 4.9 ± 0.4** 4.2 ± 0.6 4.3 ± 0.7* 5.3 ± 0.4** 4.9 ± 0.5**

Statistical significance of differences compared to untreated stones: *, significant at P < 0.05; **, significant at P < 0.01
Data are the means of three replication ± standard errors

Fig. 3 SEM images and EDX analysis of the unfunctionalized silicon polymer (a), silicon polymer functionalized with CuNPs (b) and unfunctionalized
acrylic polymer (c), acrylic polymer functionalized with CuNPs (d) while black arrows indicate the elemental copper
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biosynthesized CuNPs was not changed by merging with
consolidation polymers. These results are in agreement
with our preceding study [19] that revealed the protec-
tion of some archeological stone against microbial
colonization via the application of consolidation poly-
mers/AgNPs composites onto their surfaces. Similarly,
Pinna et al. [37] clarified a superior protective behavior
against the microbial colonization on stones via treating
them with consolidants loaded with copper nanoparticles.
In addition to the antimicrobial task of the functional-

ized polymers, they demonstrated an apparent perfection
in the physical and mechanical properties of the treated
stones. The consolidation polymers especially silicone
polymer decreased the level of water absorption and
porosity of stones through the formation of a protective
layer. This layer is formed due to the penetration of the
polymer molecules into voids and pores of the stone
matrix. Moreover, the mechanical measurements indi-
cated that both types of polymers increased the com-
pressive strength which reflects the importance of using
these polymers in the consolidation processes of the
limestone monuments. These results are in harmony
with Ahmed [38] who recorded a marked improvement
in the physico-mechanical behavior of limestone samples
after treating them with some synthetic polymers. Also,
Khallaf et al. [39] showed an increase in bulk density and
decrease in porosity as well as increase in compressive
strength of the monuments made of sandstone and lime-
stone after treating them with some organic polymers.

Conclusion
Copper has strong biocidal activity with non-specific
mode of action against microbial cells that make it ideal
antimicrobial agent. CuNPs were prepared through
novel bioprocess that utilizes volatile metabolites of
Escherichia coli to aggregate Cu ions into nanometal
structures away from the bacterial cells. This bioprocess
is inexpensive and eco-friendly. Besides, uncontaminated
bacterial biomass could be used safely in different appli-
cations. The incorporation of CuNPs into polymer
matrix produced nanocopper composites with remark-
able antimicrobial capability. The functionalized consoli-
dation polymers could be used not only to inhibit the
microbial growth on the surfaces of historical stones but
also to improve physical and mechanical properties of
the treated stones. Additional research is required to
evaluate the application of consolidation polymers
loaded with nanoparticles of copper in situ treatment.
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