ON L-FUZZY TOPOGENOUS ORDERS

M.El-Dardery

Department of Mathematics, Faculty of Science, Faiyum University, Faiyum, Egypt

Abstract.

In this paper we study L-fuzzy topogenous orders, where L represents a completely distributive lattice. We shall investigate the level decomposition of L-fuzzy topogenous on X and the corresponding L-fuzzy topogenous continuous maps. In addition, we shall establish the representation theorems of L-fuzzy topogenous on X.

Keywords.

L-fuzzy topogenous; L-topogenous; L-fuzzy topogenous continuous map; L-topogenous continuous map

1. INTRODUCTION

The concept of fuzzy topology was first define in 1968 by Chang [3] and later redefined in a somewhat different way by Lowen [16] and by Hutton [8]. According to Sostak [27], these definitions, a fuzzy topology is a crisp subfamily of family of fuzzy sets and fuzziness in the concept of openness of a fuzzy set has not been considered, which seems to be a drawback in the process of fuzzification of the concept of topological spaces. Therefore, Sostak introduced a new definition of fuzzy topology in 1985 [27], Later on he has developed the theory of fuzzy topological spaces in [28]. After that, several authors [5-8,15,16,23-30] have reintroduced the same definition and studied fuzzy topological spaces being unaware of Sostak's work. In [31] Zhang et al. investigated the level decomposition of L-fuzzy topology and the corresponding L-fuzzy continuous maps also, established the representation theorems of L-fuzzy topology. There have been all kinds of studies about the theory of topogenous in a fuzzy set theory (see [1,2,4,9-14,17-22], etc.). Now in the present paper, we study the level decomposition of an L-fuzzy topogenous and the corresponding L-fuzzy topogenous continuous maps. In addition, we also establish some representation theorems for L-fuzzy topogenous on X. The main results

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

of this paper are several representation theorems for L-fuzzy topogenous on X, where L represents a completely distributive lattice. Based on the results of this paper, we have also developed representation theorems for the category L-FP which consists of L-fuzzy topogenous orders and L-fuzzy topogenous continuous maps.

2. Preliminaries

Throughout this paper, L represents a completely distributive lattice with the smallest element \bot and the greatest element \top , where $\bot \neq \top$. We define M(L) to be the set of all non-zero \lor -irreducible (or coprime) elements in L such that $a \in M(L)$ iff $a \leq b \lor c$ implies $a \leq b$ or $a \leq c$. Let P(L) be the set of all non-unit prime elements in L such that $a \in P(L)$ iff $a \geq b \land c$ implies $a \geq b$ or $a \geq c$. Finally, let X be a non-empty usual set, and L^X be the set of all L-fuzzy sets on X. For each $a \in L$, let \underline{a} denote a constant-valued L-fuzzy set with a as its value. Let $\underline{\bot}$ and $\underline{\top}$ be the smallest element and greatest element in L^X , respectively. for the empty set $\phi \subset L$, we define $\land \phi = \top$ and $\lor \phi = \bot$.

Definition 2.1[29].

Suppose that $a \in L$ and $A \subset L$.

(1) A is called a maximal family of a if

(a) $\inf A = a$,

(b) $\forall B \subset L$, inf $B \leq a$ implies that $\forall x \in A$ there exists $y \in B$ such that $y \leq x$.

(2) A is called a minimal family of a if

(a) $\sup A = a$,

(b) $\forall B \subset L$, sup $B \ge a$ implies that $\forall x \in A$ there exists $y \in B$ such that $y \ge x$.

Remark 2.2.[8].

Hutton proved that if L is a completely distributive lattice and $a \in L$, then there exists $B \subset L$ such that

(i) $a = \bigvee B$, and

(ii) if $A \subset L$ and $a = \bigvee A$, then for each $b \in B$ there is a $c \in A$ such that $b \leq c$.

However, if $\forall a \in L$, and if there exists $B \subset L$ satisfying (i) and (ii), then in general L is not a completely distributive lattice. To this end, Wang [23] introduced the following modification of condition (ii), (ii') if $A \subset L$ and $a \leq \bigvee A$, then for each $b \in B$ there is a $c \in A$ such that $b \leq c$.

Wang proved that a complete lattice L is completely distributive if and only if for each element $a \in L$, there exists $B \subset L$ satisfying (i) and (ii). Such a set B is called a minimal set of a by Wang [31]. The concept of maximal family is the dual concept of minimal family, and a complete lattice L is completely distributive if and only if for each element $a \in L$, there exists a maximal family $B \subset L$.

Let $\alpha(a)$ denote the union of all maximal families of a. Likewise, let $\beta(a)$ denote the union of all minimal sets of a. Finally, let $\alpha^*(a) = \alpha(a) \cap P(L)$ and $\beta^*(a) = \beta(a) \cap M(L)$. One can easily see that both $\alpha(a)$ and $\alpha^*(a)$ are maximal sets of a. Likewise, both $\beta(a)$ and $\beta^*(a)$ are minimal sets of a. Also, we have $\alpha(\top) = \phi$.

Definition 2.3. (Katsaras [9])

A binary relation η on L^X is an L-semi-topogenous order on X, if it satisfies the following axioms:

 $\begin{array}{ll} (T1) \ (\underline{\top},\underline{\top}), (\underline{\perp},\underline{\perp}) \in \eta, \\ (T2) \ If \ (\lambda,\mu) \in \eta, \ then \ \lambda \leq \mu, \\ (T3) \ If \ \lambda \leq \lambda_1, \ \mu_1 \leq \mu \ and \ (\lambda_1,\mu_1) \in \eta, \ then \ (\lambda,\mu) \in \eta, \\ An \ L-fuzzy \ semi-topogenous \ order \ is \ called \\ (I) \ L-fuzzy \ topogenous \ if \\ (T4) \ (\lambda \lor \mu, \gamma) \in \eta \ iff \ (\lambda, \gamma) \in \eta, \ (\mu, \gamma) \in \eta \\ (T5) \ (\lambda,\mu \land \gamma) \in \eta \ iff \ (\lambda,\mu) \in \eta, \ (\lambda,\gamma) \in \eta. \\ (II) \ Perfect \ if \\ (T6) \ (\lambda_i,\mu) \in \eta \ for \ any \ \{\mu,\lambda_i \mid i \in \Delta\} \subset L^X \ implies \ (\bigvee_{i \in \Delta} \lambda_i,\mu) \in \eta, \\ (III) \ Co-perfect \ if \\ (T7) \ (\lambda,\mu_i) \in \eta \ for \ any \ \{\mu_i,\lambda \mid i \in \Delta\} \subset L^X \ implies \ (\lambda, \bigwedge_{i \in \Delta} \mu_i) \in \eta, \\ (IV) \ Biperfect \ if \ it \ is \ perfect \ and \ biperfect. \end{array}$

As in (Shi [23-25] and Wang [29]) we give the following Lemma:

Lemma 2.4.

For $a \in L$ and a map $\eta : L^X \times L^X \to L$, we define

$$\eta_{[a]} = \{ (\lambda, \mu) \in L^X \times L^X \mid \eta(\lambda, \mu) \ge a \}$$

and

$$\eta^{[a]} = \{ (\lambda, \mu) \in L^X \times L^X \mid a \notin \alpha(\eta(\lambda, \mu)) \}$$

Let η be a map from $L^X \times L^X$ to L and $a, b \in L$. Then

 $(1) \ a \in \beta(b) \Rightarrow \eta_{[b]} \subset \eta_{[a]}; \ a \in \alpha(b) \Rightarrow \eta^{[a]} \subset \eta^{[b]}.$ $(2) \ a \leq b \Leftrightarrow \beta(a) \subset \beta(b) \Leftrightarrow \beta^*(a) \subset \beta^*(b) \Leftrightarrow \alpha(b) \subset \alpha(a) \Leftrightarrow \alpha^*(b) \subset \alpha^*(a).$ $(2) \ a (\Lambda = a) \qquad \text{if } a = a(a) \text{ and } \beta(b) = a(a) \text{ for any } a(a) \text{ for any } b(a) = a($

(3) $\alpha(\bigwedge_{i\in\Delta} a_i) = \bigcup_{i\in\Delta} \alpha(a_i)$ and $\beta(\bigvee_{i\in\Delta} a_i) = \bigcup_{i\in\Delta} \beta(a_i)$ for any sub-family $\{a_i\}_{i\in\Delta} \subset L$

3. Level decomposition of an L-fuzzy topogenous

Definition 3.1[13].

A map $\eta: L^X \times L^X \to L$ is called an *L*-fuzzy semi-topogenous order on X if it satisfies the following conditions:

 $(FT1) \eta(\underline{\top},\underline{\top}) = \eta(\underline{\perp},\underline{\perp}) = \top,$ $(FT2) \text{ If } \eta(\lambda,\mu) \neq \bot, \text{ then } \lambda \leq \mu,$ $(FT3) \text{ If } \lambda \leq \lambda_1, \ \mu_1 \leq \mu \text{ then } \eta(\lambda_1,\mu_1) \leq \eta(\lambda,\mu).$ An *L*-fuzzy semi-topogenous order is called (I) L-fuzzy topogenous if $(FT4) \ \eta(\lambda \lor \mu, \gamma) \geq \eta(\lambda, \gamma) \land \eta(\mu, \gamma),$ $(FT5) \ \eta(\lambda,\mu \land \gamma) \geq \eta(\lambda,\mu) \land \eta(\lambda,\gamma).$ (II) Perfect if $(FT6) \ \eta(\bigvee_{i \in \Delta} \lambda_i,\mu) \geq \bigwedge_{i \in \Delta} \eta(\lambda_i,\mu), \text{ for any } \{\mu,\lambda_i \mid i \in \Delta\} \subset L^X.$ (III) Co-perfect if $(FT7) \ \eta(\lambda,\bigwedge_{i \in \Delta} \mu_i) \geq \bigwedge_{i \in \Delta} \eta(\lambda_i,\mu), \text{ for any } \{\lambda,\mu_i \mid i \in \Delta\} \subset L^X.$ (IV) Biperfect if it is perfect and biperfect.

The pair (X, η) is said to be an *L*-fuzzy topogenous space. Just as an *L*-topogenous on X is an ordinary subset of $L^X \times L^X$, an *L*-fuzzy topogenous on X is a fuzzy subset of $L^X \times L^X$.

Remark 3.2.

(1) If $\eta: 2^X \times 2^X \to I$ where I = [0, 1] such that the above conditions hold respectively, we call it a *fuzzifying topogenous* on X in a sense [17].

(2) We easily show that every L-fuzzy topogenous order is a Katsaras's fuzzy topogenous order [9].

Theorem 3.3.

Let η be a map $\eta: L^X \times L^X \to L$. Then the following conditions are equivalent:

(1) η is an *L*-fuzzy topogenous on *X*.

(2) $\forall a \in M(L), \eta_{[a]}$ is an L-topogenous on X.

(3) $\forall a \in L, \eta^{[a]}$ is an L-topogenous on X.

(4) $\forall a \in P(L), \eta^{[a]}$ is an L-topogenous on X.

proof. (1) \Rightarrow (2): this part is obvious.

(2) \Rightarrow (1): (FT1) For each $a \in M(L)$, we have $(\underline{\top}, \underline{\top}) \in \eta_{[a]}$, and $\eta(\underline{\top}, \underline{\top}) \geq a$. Accordingly,

$$\eta(\underline{\top},\underline{\top}) \ge \bigvee \{a \mid a \in M(L)\} = \top.$$

Thus, $\eta(\underline{\top}, \underline{\top}) = \top$. Similarly $\eta(\underline{\perp}, \underline{\perp}) = \top$.

(FT2) Directly from (T2).

(FT3) Let $\lambda, \lambda_1, \mu_1, \mu \in L^X$ with $\lambda \leq \lambda_1, \mu_1 \leq \mu$. Clearly, when $\eta(\lambda_1, \mu_1) = \bot$, we have $\eta(\lambda_1, \mu_1) \leq \eta(\lambda, \mu)$. Otherwise if $\eta(\lambda_1, \mu_1) > \bot$, then for each $\eta(\lambda_1, \mu_1) \geq a$, we have $\eta(\lambda_1, \mu_1) \in \eta_{[a]}$. Consequently, we have $\eta(\lambda, \mu) \in \eta_{[a]}$ or $\eta(\lambda, \mu) \geq a$. This further implies that

$$\eta(\lambda,\mu) \ge \bigvee \{a \in M(L) \mid \eta(\lambda_1,\mu_1) \ge a\} = \eta(\lambda_1,\mu_1).$$

(FT4) Let $\lambda, \mu, \gamma \in L^X$. Clearly, when $\eta(\lambda, \gamma) \wedge \eta(\mu, \gamma) = \bot$, we have $\eta(\lambda \lor \mu, \gamma) \ge \eta(\lambda, \gamma) \wedge \eta(\mu, \gamma)$ Otherwise if $\eta(\lambda, \gamma) \wedge \eta(\mu, \gamma) > \bot$, then for each $\eta(\lambda, \gamma) \wedge \eta(\mu, \gamma) \ge a$, we have $\eta(\lambda, \gamma) \ge a$ and $\eta(\mu, \gamma) \ge a$ or $\eta(\lambda, \gamma) \in \eta_{[a]}$ and $\eta(\mu, \gamma) \in \eta_{[a]}$. Consequently, we have $(\lambda \lor \mu, \gamma) \in \eta_{[a]}$ and so $(\lambda \lor \mu, \gamma) \ge a$ This further implies that

$$\eta(\lambda \lor \mu, \gamma) \ge \bigvee \{a \in M(L) \mid \eta(\lambda, \gamma) \land \eta(\mu, \gamma) \ge a\} = \eta(\lambda, \gamma) \land \eta(\mu, \gamma).$$

(FT5) Similar to (FT4).

(1) \Rightarrow (3): (T1) $\forall a \in L$, since $\eta(\underline{\top}, \underline{\top}) = \eta(\underline{\perp}, \underline{\perp}) = \overline{\top}$, and $\alpha(\overline{\top}) = \phi$, we have $a \notin \alpha(\overline{\top}) = \alpha(\eta(\underline{\top}, \underline{\top})) = \alpha(\eta(\underline{\perp}, \underline{\perp}))$. Thus $(\underline{\top}, \underline{\top}), (\underline{\perp}, \underline{\perp}) \in \eta^{[a]}$ (T2) Direction (TT2)

(T2) Directly from (FT2)

(T3) Let $\lambda, \lambda_1, \mu_1, \mu \in L^X$ with $\lambda \leq \lambda_1, \mu_1 \leq \mu$ and $(\lambda_1, \mu_1) \in \eta^{[a]}$. Then

$$a \notin \alpha(\eta(\lambda_1, \mu_1)) \supset \alpha(\eta(\lambda, \mu))$$

Hence $(\lambda, \mu) \in \eta^{[a]}$.

(T4) Let $(\lambda, \gamma), (\mu, \gamma) \in \eta^{[a]}$. Then $a \notin \alpha(\eta(\lambda, \gamma))$ and $a \notin \alpha(\eta(\mu, \gamma))$. Hance

$$a \not\in \alpha(\eta(\lambda,\gamma)) \cup \alpha(\eta(\mu,\gamma)) = \alpha(\eta(\lambda,\gamma) \land \eta(\mu,\gamma)) \supset \alpha(\eta(\lambda \lor \mu,\gamma))$$

Furthermore, since $a \notin \alpha(\eta(\lambda \lor \mu, \gamma))$, we have $(\lambda \lor \mu, \gamma) \in \eta^{[a]}$. (T5) Similar to (T4).

 $(3) \Rightarrow (4)$: this part is obvious.

 $(4) \Rightarrow (1)$:

(FT1) $\forall a \in P(L)$, it is clear that $(\underline{\top}, \underline{\top}) \in \eta^{[a]}$. Thus $a \notin \alpha(\eta(\underline{\top}, \underline{\top}))$. Then $\alpha^*(\eta(\underline{\top}, \underline{\top})) = \phi$ and

$$\eta(\underline{\top},\underline{\top}) = \bigwedge \alpha^*(\eta(\underline{\top},\underline{\top})) = \top.$$

Similarly $\eta(\underline{\perp}, \underline{\perp}) = \top$.

(FT2) Directly from (T2).

(FT3) Let $\lambda, \lambda_1, \mu_1, \mu \in L^X$ with $\lambda \leq \lambda_1, \mu_1 \leq \mu$. Clearly, when $\eta(\lambda_1, \mu_1) = \bot$, we have $\eta(\lambda_1, \mu_1) \leq \eta(\lambda, \mu)$. Otherwise if $\eta(\lambda_1, \mu_1) > \bot$, then for each $a \in P(L)$ and $a \notin \alpha(\eta(\lambda_1, \mu_1))$, we have $(\lambda_1, \mu_1) \in \eta^{[a]}$. Consequently, we have $(\lambda, \mu) \in \eta^{[a]}$ hence $a \notin \alpha(\eta(\lambda, \mu))$. Accordingly, we have $\alpha^*(\eta(\lambda_1, \mu_1) \supset \alpha^*(\eta(\lambda, \mu) \text{ or } \eta(\lambda_1, \mu_1) \leq \eta(\lambda, \mu)$

(FT4) Let $\lambda, \mu, \gamma \in L^X$. Clearly, when $\eta(\lambda, \gamma) \wedge \eta(\mu, \gamma) = \bot$, we have $\eta(\lambda \lor \mu, \gamma) \ge \eta(\lambda, \gamma) \wedge \eta(\mu, \gamma)$ Otherwise if $\eta(\lambda, \gamma) \wedge \eta(\mu, \gamma) > \bot$, then for each $a \in P(L)$ and $a \notin \alpha(\eta(\lambda, \gamma) \wedge \eta(\mu, \gamma)) = \alpha(\eta(\lambda, \gamma) \cup \alpha(\eta(\mu, \gamma)))$, we have $a \notin \alpha(\eta(\lambda, \gamma))$ and $a \notin \alpha(\eta(\mu, \gamma))$, implise $\eta(\lambda, \gamma) \in \eta^{[a]}$ and $\eta(\mu, \gamma) \in \eta^{[a]}$ and so $\eta(\lambda \lor \mu, \gamma) \in \eta^{[a]}$ hence $a \notin \alpha(\eta(\lambda \lor \mu, \gamma))$. Accordingly, we have $\alpha^*(\eta(\lambda, \gamma) \wedge \eta(\mu, \gamma)) \supset \alpha^*(\eta(\lambda \lor \mu, \gamma))$, or $\eta(\lambda \lor \mu, \gamma) \ge \eta(\lambda, \gamma) \wedge \eta(\mu, \gamma)$. (FT5) Similar to (FT4).

Theorem 3.3.

Let η be a map $\eta : L^X \times L^X \to L$ be an L-fuzzy topogenous on X. Then the following conditions are equivalent:

- (1) η is an L-fuzzy biperfect topogenous on X.
- (2) $\forall a \in M(L), \eta_{[a]}$ is an L-biperfect topogenous on X.
- (3) $\forall a \in L, \eta^{[a]}$ is an L-biperfect topogenous on X.
- (4) $\forall a \in P(L), \eta^{[a]}$ is an L-biperfect topogenous on X.

proof. $(1) \Rightarrow (2)$: this part is obvious.

 $(2) \Rightarrow (1):$

(FT6) Let $\{\mu, \lambda_i \mid i \in \Delta\} \subset L^X$. Then for each $a \in M(L)$ and $a \leq \bigwedge_{i \in \Delta} \eta(\lambda_i, \mu)$, we have $\eta(\lambda_i, \mu) \geq a$ and $(\lambda_i, \mu) \in \eta_{[a]}$ for each $i \in \Delta$.

The proof follows because $(\bigvee_{i \in \Delta} \lambda_i, \mu) \in \eta_{[a]}$ and

$$\eta(\bigvee_{i\in\Delta}\lambda_i,\mu)\geq\bigvee\{a\in M(L)\mid a\leq\bigwedge_{i\in\Delta}\eta(\lambda_i,\mu)\}=\bigwedge_{i\in\Delta}\eta(\lambda_i,\mu).$$

(FT7) Let $\{\mu_i, \lambda \mid i \in \Delta\} \subset L^X$. Then for each $a \in M(L)$ and $a \leq \bigwedge_{i \in \Delta} \eta(\lambda, \mu_i)$, we have $\eta(\lambda, \mu_i) \geq a$ and $(\lambda, \mu_i) \in \eta_{[a]}$ for each $i \in \Delta$. The proof follows because $(\lambda, \bigwedge_{i \in \Delta} \mu_i) \in \eta_{[a]}$ and

$$\eta(\lambda, \bigwedge_{i \in \Delta} \mu_i) \ge \bigvee \{a \in M(L) \mid a \le \bigwedge_{i \in \Delta} \eta(\lambda, \mu_i)\} = \bigwedge_{i \in \Delta} \eta(\lambda, \mu_i)$$

(1)
$$\Rightarrow$$
 (3):
(T6) Let $(\lambda_i, \mu) \in \eta^{[a]}$. Then $a \notin \alpha(\eta(\lambda_i, \mu))$ for each $i \in \Delta$ and

$$a \notin \bigcup_{i \in \Delta} \alpha(\eta(\lambda_i, \mu)) = \alpha(\bigwedge_{i \in \Delta} \eta(\lambda_i, \mu)) \supset \alpha(\eta(\bigvee_{i \in \Delta} \lambda_i, \mu)).$$

Consequently, we have $a \notin \alpha(\eta(\bigvee_{i \in \Delta} \lambda_i, \mu))$ or $(\bigvee_{i \in \Delta} \lambda_i, \mu) \in \eta^{[a]}$ (T7) Let $(\lambda, \mu_i) \in \eta^{[a]}$. Then $a \notin \alpha(\eta(\lambda, \mu_i))$ for each $i \in \Delta$ and

$$a \notin \bigcup_{i \in \Delta} \alpha(\eta(\lambda, \mu_i)) = \alpha(\bigwedge_{i \in \Delta} \eta(\lambda, \mu_i)) \supset \alpha(\eta(\lambda, \bigwedge_{i \in \Delta} \mu_i)).$$

Consequently, we have $a \notin \alpha(\eta(\lambda, \bigwedge_{i \in \Delta} \mu_i))$ or $(\lambda, \bigwedge_{i \in \Delta} \mu_i) \in \eta^{[a]}$

 $(3) \Rightarrow (4)$: this part is obvious.

 $(4) \Rightarrow (1):$

(FT6) Let $\{\mu, \lambda_i \mid i \in \Delta\} \subset L^X$. Obviously if $\bigwedge_{i \in \Delta} \eta(\lambda_i, \mu) = \bot$, then $\eta(\bigvee_{i \in \Delta} \lambda_i, \mu) \geq \bigwedge_{i \in \Delta} \eta(\lambda_i, \mu)$. Suppose now that $\bigwedge_{i \in \Delta} \eta(\lambda_i, \mu) > \bot$. Then $\forall a \in P(L)$ and $a \notin \alpha(\bigwedge_{i \in \Delta} \eta(\lambda_i, \mu)) = \bigcup_{i \in \Delta} \alpha(\eta(\lambda_i, \mu))$. It follows that $a \notin (\alpha(\eta(\lambda_i, \mu)))$ for each $i \in \Delta$ implies $(\lambda_i, \mu) \in \eta^{[a]}$ for each $i \in \Delta$ and so $(\bigvee_{i \in \Delta} \lambda_i, \mu) \in \eta^{[a]}$. Hence

$$\alpha^*(\eta(\bigvee_{i\in\Delta}\lambda_i,\mu))\subset\alpha^*(\bigwedge_{i\in\Delta}\eta(\lambda_i,\mu)).$$

Therefore

$$\eta(\bigvee_{i\in\Delta}\lambda_i,\mu)\geq \bigwedge_{i\in\Delta}\eta(\lambda_i,\mu)$$

(FT7) Let $\{\mu_i, \lambda \mid i \in \Delta\} \subset L^X$. Obviously if $\bigwedge_{i \in \Delta} \eta(\lambda, \mu_i) = \bot$, then $\eta(\lambda, \bigwedge_{i \in \Delta} \mu_i) \geq \bigwedge_{i \in \Delta} \eta(\lambda_i, \mu)$. Suppose now that $\bigwedge_{i \in \Delta} \eta(\lambda, \mu_i) > \bot$. Then $\forall a \in P(L)$ and $a \notin \alpha(\bigwedge_{i \in \Delta} \eta(\lambda, \mu_i)) = \bigcup_{i \in \Delta} \alpha(\eta(\lambda, \mu_i))$. It follows that $a \notin (\alpha(\eta(\lambda, \mu_i)))$ for each $i \in \Delta$ implies $(\lambda, \mu_i) \in \eta^{[a]}$ for each $i \in \Delta$ and so $(\lambda, \bigwedge_{i \in \Delta} \mu_i) \in \eta^{[a]}$. Hence

$$\alpha^*(\eta(\lambda,\bigwedge_{i\in\Delta}\mu_i))\subset\alpha^*(\bigwedge_{i\in\Delta}\eta(\lambda,\mu_i)).$$

Therefore

$$\eta(\lambda, \bigwedge_{i \in \Delta} \mu_i) \ge \bigwedge_{i \in \Delta} \eta(\lambda, \mu_i).$$

We can now state the following decomposition theorem of L-fuzzy topogenous. The proof is straightforward and therefore omitted.

Theorem 3.4..

Let η be an L-fuzzy topogenous on X. Then

$$\eta = \bigvee_{a \in L} (\underline{a} \land \eta_{[a]}) = \bigvee_{a \in M(L)} (\underline{a} \land \eta_{[a]}) = \bigwedge_{a \in L} (\underline{a} \lor \eta^{[a]}) = \bigwedge_{a \in P(L)} (\underline{a} \lor \eta^{[a]})$$

Corollary 3.5..

Let η_1 and η_2 be L-fuzzy topogenous's on X, then the following conditions are equivalent:

$$\begin{array}{l} (1) \ \eta_1 = \eta_2. \\ (2) \ \forall a \in L, \eta_{1_{[a]}} = \eta_{2_{[a]}}. \\ (3) \ \forall a \in M(L), \eta_{1_{[a]}} = \eta_{2_{[a]}}. \\ (4) \ \forall a \in L, \eta_1^{[a]} = \eta_2^{[a]}. \\ (5) \ \forall a \in P(L), \eta_1^{[a]} = \eta_2^{[a]}. \end{array}$$

Theorem 3.6.

Let
$$\eta$$
 be an L-fuzzy topogenous on X, then
(1) $a \in L$, $\eta_{[a]} = \bigcap_{b \in \beta(a)} \eta_{[b]}$.
(2) $\forall a \in M(L)$, $\eta_{[a]} = \bigcap_{b \in \beta^*(a)} \eta_{[b]}$.
(3) $a \in L$, $\eta^{[a]} = \bigcap_{a \in \alpha(b)} \eta^{[b]}$.
(4) $\forall a \in P(L)$, $\eta^{[a]} = \bigcap_{a \in \alpha^*(a), b \in P(L)} \eta^{[b]}$.

Proof.

(1)By Lemma 2.4, we have that $\forall a \in L, \eta_{[a]} \subset \bigcap_{b \in \beta(a)} \eta_{[b]}$. To show that $\eta_{[a]} \supset \bigcap_{b \in \beta(a)} \eta_{[b]}$, we take $(\lambda, \rho) \in L^X \times L^X$ and $(\lambda, \rho) \in \bigcap_{b \in \beta(a)} \eta_{[b]}$. Notice that $\forall b \in \beta(a), \eta(\lambda, \rho) \ge b$. Hence $\eta(\lambda, \rho) \ge \bigvee \{b \mid b \in \beta(a)\} = a$, which implies that $(\lambda, \rho) \in \eta_{[a]}$.

(2) The proof is similar to (1).

(3)By Lemma 2.4, we have that $\forall a \in L, \eta^{[a]} \subset \bigcap_{a \in \alpha(b)} \eta^{[b]}$. To show that $\eta^{[a]} \supset \bigcap_{a \in \alpha(b)} \eta^{[b]}$, we take $(\lambda, \rho) \in L^X \times L^X$ and $(\lambda, \rho) \in \bigcap_{a \in \alpha(b)} \eta^{[b]}$. Notice that $\forall b \in L$ and $a \in \alpha(b)$, it follows that $b \notin \alpha(\eta(\lambda, \rho))$. We prove by contradiction as follows. Suppose that $a \in \alpha(\eta(\lambda, \rho))$. Notice that $\eta(\lambda, \rho) = \bigwedge \{b \mid b \in \alpha(\eta(\lambda, \rho))\}$ and $\alpha(\eta(\lambda, \rho)) = \bigcup \{\alpha(b) \mid b \in \alpha(\eta(\lambda, \rho))\}$. There must exist $b \in \alpha(\eta(\lambda, \rho))$ such that $a \in \alpha(b)$. But this is impossible.

(4) The proof is similar to (3).

Remark 3.7.

(1) $b \in \beta(a)$ implies $b \ll a$, where $b \ll$ is way-below relation [6], i.e. $b \ll a$ if and only if for every up-directed set S in L, $\bigvee S \ge a$ implies that there exists $s \in S$ such that $s \ge b$;

(2) If $a \in M(L)$, then $b \in \beta^*(a)$ if and only if $b \ll a$.

(3) $\forall a \in M(L), \ \eta_{[a]} = \bigcap_{b \in \beta^*} \eta_{[b]} \Leftrightarrow \eta_{[a]} = \bigcap_{b \ll a, b \in M(L)} \eta_{[b]}.$

Proof.

(1) Since $\beta(a)$ is a minimal set of a, from Definition 2.1, we have that for every up-directed set S in L, if $\bigvee S \ge a$, then $\forall b \in \beta(a)$ there exists $s \in S$ such that $s \ge b$. It follows that $b \ll a$.

(2) Let $a \in M(L)$ and $b \ll a$. From Theorems 1.3.6 and 1.3.8 in [15] and Definition 2.1, we know that $\beta^*(a)$ is both an up-directed set and a lower set, and $\bigvee \beta^*(a) = a$. Hence, there exists $b' \in \beta^*(a)$ such that $a \ge b' \ge b$. In other words, $b \in \beta^*(a)$. Conversely, if $b \in \beta^*(a)$, then since $\beta^*(a) \subset \beta(a)$ and $b \in \beta^*(a)$ implies $b \in \beta(a)$. It follows that $b \ll a$.

(3) It is obvious.

Theorem 3.8.

Let $\{\eta_{[a]} \mid a \in M(L)\}$ be a family of L-topogenous's on X. Then the following conditions are equivalent:

(1) There exists an L-fuzzy topogenous η on X such that $\eta_{[a]} = \eta_a$ for each $a \in M(L)$.

(2) $\forall a \in M(L), \eta_a = \bigcap_{b \in \beta^*(a)} \eta_b.$

Proof. $(1) \Rightarrow (2)$: This holds because of Theorem 3.5.

(2) \Rightarrow (1): Let $\eta = \bigvee_{a \in M(L)} (a \land \eta_a)$. Obviously, we have $\eta_a \subset \eta_{[a]}$. For any $(\lambda, \rho) \in \eta_{[a]}$, we have $\eta(\lambda, \rho) \ge a$ and $\bigvee \{b \in M(L) \mid (\lambda, \rho) \in \eta_b\} \ge a$. Next, since $\beta^*(a)$ is a minimal family of a, for each $b \in \beta^*(a)$, there exists $b' \in M(L)$ such that $b \ge b'$ and $(\lambda, \rho) \in \eta_{b'} \subset \eta_b$. Therefore, $\bigcap_{b \in \beta^*(a)} \eta_b = \eta_a$.

Similarly, we can state the following theorems.

Theorem 3.9. Let $\{\eta_a \mid a \in P(L)\}$ be a family of L-topogenous's on X. Then the following conditions are equivalent:

(1) There exists an L-fuzzy topogenous η on X such that $\eta^{[a]} = \eta_a$ for each $a \in P(L)$.

(2) $\forall a \in P(L), \eta_a = \bigcap_{a \in \alpha^*(b)} \eta_b.$

Theorem 3.10. Let $\{\eta_a \mid a \in L\}$ be a family of *L*-topogenous's on *X*. Then the following conditions are equivalent:

(1) There exists an L-fuzzy topogenous η on X such that $\eta_{[a]} = \eta_a$ for each $a \in L$.

(2) $\forall a \in L, \eta_a = \bigcap_{b \in \beta(a)} \eta_b.$

Theorem 3.11. Let $\{\eta_a \mid a \in L\}$ be a family of *L*-topogenous's on *X*. Then the following conditions are equivalent:

(1) There exists an L-fuzzy topogenous η on X such that $\eta^{[a]} = \eta_a$ for each $a \in L$.

(2) $\forall a \in L, \eta_a = \bigcap_{a \in \alpha(b)} \eta_b.$

4. Representation theorems of *L*-fuzzy topogenous's

Let LT[X] denote the family of all *L*-topogenous's on *X*. Let LFT[X] denote the family of all *L*-fuzzy topogenous's on *X*. The order relation on LFT[X] is defined as follow:

$$\forall \eta_1, \eta_2 \in LFT[X], \eta_1 \preceq \eta_2 \Leftrightarrow \forall (\lambda, \rho) \in L^X \times L^X, \eta_1(\lambda, \rho) \leq \eta_2(\lambda, \rho)$$

Theorem 4.1.

 $(LFT[X], \preceq)$ is a complete lattice. In fact, it is a complete sub-meet-semilattice of $L^{L^X \times L^X}$, i.e. closed under the \wedge of $L^{L^X \times L^X}$.

Proof. Let X be a set. Define two maps $\eta: L^X \times L^X \to L$ as follows:

$$\eta_0(\lambda,\rho) = \begin{cases} \top, & \text{if } \lambda = \underline{\perp} \text{ or } \rho = \underline{\top}, \\ \bot, & \text{otherwise,} \end{cases}$$
$$\eta_1(\lambda,\rho) = \begin{cases} \top, & \text{if } \lambda \leq \rho, \\ \bot, & \text{otherwise.} \end{cases}$$

Clearly, we have $\eta_0, \eta_1 \in LFT[X]$, and they are the smallest element and the greatest element in $(LFT[X], \preceq^L)$, respectively. Next, let $\{\eta_i \mid i \in \Delta\} \subset LFT[X]$ and $\eta = \bigwedge_{i \in \Delta}^{\preceq^L} \eta_i$. Obvious $\eta \in LFT[X]$. Accordingly, $(LFT[X], \preceq)$ is a complete lattice.

To facilitate further illustration, let us define the following classes:

$$U^{L}[X] = \left\{ F : L \to LT[X] \mid \forall a \in L, F(a) = \bigcap_{a \in \alpha(b)} F(b) \right\}$$
$$U_{L}[X] = \left\{ F : L \to LT[X] \mid \forall a \in L, F(a) = \bigcap_{b \in \beta(a)} F(a) \right\}$$

$$U_{M(L)}[X] = \left\{ F : M(L) \to LT[X] \mid \forall a \in M(L), F(a) = \bigcap_{b \in \beta^*(a)} F(b) \right\}$$

$$U_{P(L)}[X] = \left\{ F : P(L) \to LT[X] \mid \forall a \in P(L), F(a) = \bigcap_{a \in \alpha^*(b)} F(b) \right\}$$

In addition, let us define the following order relations within the classes $U^{L}[X], U_{L}[X], U_{M(L)}[X]$ and $U_{P(L)}[X]$:

$$F_1, F_2 \in U^L[X], F_1 \preceq^L F_2 \Leftrightarrow \forall a \in L, F_1(a) \subset F_2(a)$$
$$F_1, F_2 \in U_L[X], F_1 \preceq_L F_2 \Leftrightarrow \forall a \in L, F_1(a) \subset F_2(a)$$

$$F_1, F_2 \in U_{M(L)}[X], F_1 \preceq_{M(L)} F_2 \Leftrightarrow \forall a \in M(L), F_1(a) \subset F_2(a)$$

$$F_1, F_2 \in U_{P(L)}[X], F_1 \preceq_{P(L)} F_2 \Leftrightarrow \forall a \in P(L), F_1(a) \subset F_2(a)$$

Theorem 4.2.

 $(U^{L}[X], \leq^{L}), (U_{L}[X], \leq_{L}), (U_{M(L)}[X], \leq_{M(L)}) \text{ and } (U_{P(L)}[X], \leq_{P(L)})$ are complete lattices. Obviously, $(U^{L}[X], \leq^{L})$ and $(U_{L}[X], \leq_{L})$ are complete sub-meet-semilattices of the lattice $(LT[X])^{L}$ (i.e., closed under the \wedge of $(LT[X])^{L}$, when $\{F_{i} \mid i \in \Delta\} \subset U^{L}[X], F = \bigwedge_{i \in \Delta}^{\leq L} F_{i}$ be defined as $\forall a \in L, F(a) = \bigcap_{i \in \Delta} F_{i}(a), (U_{M(L)}[X], \leq_{M(L)})$ is a complete submeet-semilattices of the lattice $(LT[X])^{M(L)}$, and $(U_{P(L)}[X]), \leq_{p(L)})$ is a complete sub-meet-semilattices of the lattice $(LT[X])^{P(L)}$.

Proof. $\forall a \in L$, let us define $F_{\perp}(a) = \{(\lambda, \rho) \mid \lambda = \underline{\perp}, \rho = \underline{\top}\}$ and $F_{\top}(a) = \{(\lambda, \rho) \mid \lambda \leq \rho\}$. Clearly, we have $F_{\perp}(a), F_{\top}(a) \in U^{L}[X]$, and they are the smallest element and the greatest element in $(U^{L}[X], \preceq^{L})$, respectively. Next, let $\{F_{i} \mid i \in \Delta\} \subset U^{L}[X]$ and $F = \bigwedge_{i \in \Delta}^{\preceq^{L}} F_{i}$. Since

$$F(a) = \bigcap_{i \in \Delta} F_i(a) = \bigcap_{i \in \Delta} \bigcap_{a \in \alpha(b)} F_i(b) = \bigcap_{a \in \alpha(b)} \bigcap_{i \in \Delta} F_i(b) = \bigcap_{a \in \alpha(b)} F(b),$$

it follows that $F \in U^{L}[X]$. Accordingly, $(U^{L}[X], \leq^{L})$ is a complete lattice. The same argument can be used to prove the rest of the theorem.

The following representation theorem of L-fuzzy topogenous follows naturally.

Theorem 4.3.

The map $f: LFT[X] \to U^{L}[X], \eta \mapsto F_{\eta}$ (for every $a \in L$ and $F_{\eta}(a) = \eta^{[a]}$ is an isomorphism in the category of complete meet-semilattices and $f^{\leftarrow}: U^{L}[X] \to LFT[X], F \mapsto \eta_{F} = \bigwedge_{a \in L} (\underline{a} \lor F(a)).$

Proof.

For each $\eta \in LFT[X]$, it is easy to verify that

$$F_{\eta}(a) = \eta^{[a]} = \bigcap_{a \in \alpha(b)} \eta^{[b]} = \bigcap_{a \in \alpha(b)} F_{\eta}(b)$$

Hence, $F_{\eta} \in U^{L}[X]$. Next, by Theorems 3.3, 3.4 and Corollary 3.5, it suffices to show that f is an injection. Since $(\lambda, \rho) \notin (\eta_{F})^{[c]}$ iff

$$\alpha((\eta_F(\lambda,\rho)) = \bigcup_{a \in L} \alpha((\underline{a} \lor F(a))((\lambda,\rho)) = \bigcup \left\{ \alpha(a) \mid a \in L, (\lambda,\rho) \notin F(a) \right\}$$

iff there exists $a \in L$ such that $c \in \alpha(a)$ and $(\lambda, \rho) \notin F(a)$ iff $(\lambda, \rho) \notin \bigcap_{c \in \alpha(a)} F(a) = F(c)$, we have $F_{\eta_F}(c) = \eta_F^{[c]} = F(c)$. This shows that $F_{\eta_F} = F$. It follows that f is a surjection as well as a bijection, and

$$f^{\leftarrow}: U^L[X] \to LFT[X], F \mapsto \eta_F = \bigwedge_{a \in L} (\underline{a} \lor F(a))$$

Next, let $\eta_1, \eta_2 \in LFT[X]$ and $\{\eta_i \mid i \in \Delta\} \subset LFT[X]$. Then it is straightforward to show that $f(\eta_1) \preceq^L f(\eta_2)$ when $\eta_1 \preceq \eta_2$. Hence $f(\bigwedge_{i \in \Delta} \eta_i) = \bigwedge_{i \in \Delta}^{\preceq^L} f(\eta_i)$ and the proof is complete.

The following Theorem follows directly from the above proof.

Theorem 4.4.

The map $f : LFT[X] \to U_{P(L)}[X], \eta \mapsto F_{\eta}$ (for every $a \in P(L)$ and $F_{\eta}(a) = \eta^{[a]}$ is an isomorphism in the category of complete meetsemilattices and $f^{\leftarrow} : U_{P(L)}[X] \to LFT[X], F \mapsto \eta_F = \bigwedge_{a \in P(L)} (\underline{a} \lor F(a)).$

Theorem 4.5.

The map $f: LFT[X] \to U_L[X], \eta \mapsto F_\eta$ (for every $a \in L$ and $F_\eta(a) = \eta_{[a]}$ is an isomorphism in the category of complete meet-semilattices and $f^{\leftarrow}: U^L[X] \to LFT[X], F \mapsto \eta_F = \bigwedge_{a \in L} (\underline{a} \lor F(a)).$

Proof.

For each $\eta \in LFT[X]$, it is easy to verify that

$$F_{\eta}(a) = \eta_{[a]} = \bigcap_{b \in \beta(a)} \eta_{[b]} = \bigcap_{b \in \beta(a)} F_{\eta}(b)$$

Hence, $F_{\eta} \in U_L[X]$. Next, by Theorems 3.4 and Corollary 3.5, it suffices to show that f is an injection. It is proved easily that $(\lambda, \rho) \in (\eta_F)_{[c]}$ iff

$$\eta_F((\lambda,\rho)) = \bigvee_{a \in L} (\underline{a} \land F(a))((\lambda,\rho)) = \bigvee \left\{ a \mid (\lambda,\rho) \in F(a) \right\} \ge c$$

iff (because of Lemma 2.4)

$$\bigcup_{(\lambda,\rho)\in F(a)}\beta(a)=\beta(\bigvee\left\{a\mid (\lambda,\rho)\in F(a)\right\})\supset\beta(c)$$

On the other hand, we can prove

$$(\lambda,\rho)\in F(c)=\bigcap_{a\in\beta(\alpha)}F(a)\Leftrightarrow \forall a\in\beta(\alpha), (\lambda,\rho)\in F(a)\Leftrightarrow \bigcup_{(\lambda,\rho)\in F(a)}\beta(a)\supset\beta(c)$$

Clearly, $\forall a \in \beta(\alpha), (\lambda, \rho) \in F(a) \Rightarrow \bigcup_{(\lambda,\rho) \in F(a)} \beta(a) \supset \bigcup_{a \in \beta(c)} = \beta(c).$ Conversely, for each $d \in \beta(c) \subset \bigcup_{(\lambda,\rho) \in F(a)} \beta(a)$, then there exists $a \in L$ such that $d \in \beta(a)$ and $(\lambda, \rho) \in F(a) = \bigcap_{b \in \beta(a)} F(b)$. It show that $(\lambda, \rho) \in F(d)$. So, we conclude that $(\lambda, \rho) \in (\eta_F)_{[c]} \Leftrightarrow (\lambda, \rho) \in F(c)$, i.e., $F_{\eta_F}(c) = (\eta_F)_{[c]} = F(c)$. This shows that $F_{\eta_F} = F$. It follows that f is a surjection as well as a bijection, and

$$f^{\leftarrow}: U_L[X] \to LFT[X], F \mapsto \eta_F = \bigvee_{a \in L} (\underline{a} \wedge F(a))$$

Next, let $\eta_1, \eta_2 \in LFT[X]$ and $\{\eta_i \mid i \in \Delta\} \subset LFT[X]$. Then it is straightforward to show that $f(\eta_1) \preceq^L f(\eta_2)$ when $\eta_1 \preceq \eta_2$. Hence $f(\bigwedge_{i \in \Delta} \eta_i) = \bigwedge_{i \in \Delta}^{\preceq^L} f(\eta_i)$ and the proof is complete.

The following Theorem follows directly from the above proof.

Theorem 4.6.

The map $f : LFT[X] \to U_{M(L)}[X], \eta \mapsto F_{\eta}$ (for every $a \in M(L)$ and $F_{\eta}(a) = \eta_{[a]}$ is an isomorphism in the category of complete meetsemilattices and $f^{\leftarrow} : U_{M(L)}[X] \to LFT[X], F \mapsto \eta_F = \bigvee_{a \in M(L)} (\underline{a} \land F(a)).$

5. L-Fuzzy continuous topogenous maps

Definition 5.1.

Let (X, η_1) and (Y, η_2) be two *L*-fuzzy topogenous orders. Let $f : X \to Y$ be a map. $f : (X, \eta_1) \to (Y, \eta_2)$ is called *L*-fuzzy topogenous continuous map if for every $(\lambda, \rho) \in L^Y \times L^Y$ we have

$$\eta_1(f^{\leftarrow}(\lambda), f^{\leftarrow}(\rho)) \ge \eta_2(\lambda, \rho),$$

where $f^{\leftarrow}(\lambda) = \lambda \circ f$.

From Definition 5.1, obviously, $f : (X, \eta_1) \to (Y, \eta_2)$ is an *L*-fuzzy topogenous continuous if and only if $\forall a \in M(L), f : (X, \eta_{1_{[a]}}) \to (Y, \eta_{2_{[a]}})$ is an *L*-topogenous continuous map.

Excepting this, we have the followings equivalent conditions:

Theorem 5.2.

Let (X, η_1) and (Y, η_2) be L-fuzzy topogenous orders and $f : X \to Y$ be a map. Then the following conditions are equivalent:

(1) $f: (X, \eta_1) \to (Y, \eta_2)$ is an L-fuzzy topogenous continuous map.

(2) $\forall a \in M(L), f : (X, \eta_{1_{[a]}}) \to (Y, \eta_{2_{[a]}})$ is an L-topogenous continuous map.

(3) $\forall a \in L, f : (X, \eta_1^{[a]}) \to (Y, \eta_2^{[a]})$ is an L-topogenous continuous map. (4) $\forall a \in P(L), f : (X, \eta_1^{[a]}) \to (Y, \eta_2^{[a]})$ is an L-topogenous continuous map.

Proof. (1) \Rightarrow (2): This part is obvious.

 $\begin{array}{l} (2) \Rightarrow (1): \ \forall (\lambda, \rho) \in L^Y \times L^Y, \ a \in M(L) \ \text{such that} \ a \leq \eta_2(\lambda, \rho), \ \text{we} \\ \text{have} \ (\lambda, \rho) \in \eta_{2_{[a]}} \ \text{ and} \ (f^{\leftarrow}(\lambda), f^{\leftarrow}(\rho)) \in \eta_{1_{[a]}} \ \text{by the continuity of} \ f : \\ (X, \eta_{1_{[a]}}) \rightarrow (Y, \eta_{2_{[a]}}). \ \text{Accordingly}, \ \eta_1(f^{\leftarrow}(\lambda), f^{\leftarrow}(\rho)) \geq a \ \text{for each} \ \forall a \in \\ M(L) \cap M(\eta_2(\lambda, \rho)), \ \text{where} \ M(\eta_2(\lambda, \rho)) = \left\{ a \in M(L) \mid a \leq \eta_2(\lambda, \rho) \right\}. \ \text{It} \\ \text{follows that} \ \eta_1(f^{\leftarrow}(\lambda), f^{\leftarrow}(\rho)) \geq \bigvee M(\eta_2(\lambda, \rho)) = \eta_2(\lambda, \rho). \end{array}$

follows that $\eta_1(f^{\leftarrow}(\lambda), f^{\leftarrow}(\rho)) \ge \bigvee M(\eta_2(\lambda, \rho)) = \{a \in M(L) \mid a \le \eta_2(\lambda, \rho)\}$. It follows that $\eta_1(f^{\leftarrow}(\lambda), f^{\leftarrow}(\rho)) \ge \bigvee M(\eta_2(\lambda, \rho)) = \eta_2(\lambda, \rho)$. (1) \Rightarrow (3): $\forall (\lambda, \rho) \in L^Y \times L^Y$, since $\eta_1(f^{\leftarrow}(\lambda), f^{\leftarrow}(\rho)) \ge \eta_2(\lambda, \rho)$, it follows from Lemma 2.4 that $a \notin \alpha(\eta_1(f^{\leftarrow}(\lambda), f^{\leftarrow}(\rho)))$ when $\forall a \in L$, if $a \notin \alpha(\eta_2(\lambda, \rho))$. In other words, if $(\lambda, \rho) \in \eta_2^{[a]}$, then $(f^{\leftarrow}(\lambda), f^{\leftarrow}(\rho)) \in$ $\eta_1^{[a]}$. Thus $f : (X, \eta_1^{[a]}) \to (Y, \eta_2^{[a]})$ is a fuzzy topogenous continuous map. (3) \Rightarrow (4): This is obvious. (4) \Rightarrow (1): For $\forall a \in P(L)$ and $(\lambda, \rho) \in$

 $L^Y \times L^Y$, if $a \notin \alpha(\eta_2(\lambda, \rho), \text{ then } (\lambda, \rho) \in \eta_2^{[a]}$. Thus $(f^{\leftarrow}(\lambda), f^{\leftarrow}(\rho)) \in \eta_1^{[a]}$ by the continuity of $f : (X, \eta_1^{[a]}) \to (Y, \eta_2^{[a]})$. In other words, $a \notin \alpha(\eta_1(f^{\leftarrow}(\lambda), f^{\leftarrow}(\rho)))$ and $\alpha^*(\eta_1(f^{\leftarrow}(\lambda), f^{\leftarrow}(\rho))) \subset \alpha^*(\eta_2(\lambda, \rho))$. It follows from Lemma 2.4 that

$$\eta_1(f^{\leftarrow}(\lambda), f^{\leftarrow}(\rho)) \ge \eta_2(\lambda, \rho)$$

Hence the proof is completed.

Definition 5.3.

Let (X, η_1) and (Y, η_2) be two *L*-fuzzy topogenous orders. Let $f : X \to Y$ be a map. $f : (X, \eta_1) \to (Y, \eta_2)$ is called *L*-fuzzy topogenous open map if for every $(\lambda, \rho) \in L^Y \times L^Y$ we have

$$\eta_2(f^{\to}(\lambda), f^{\to}(\rho)) \ge \eta_1(\lambda, \rho),$$

Theorem 5.4.

Let (X, η_1) and (Y, η_2) be L-fuzzy topogenous orders and $f: X \to Y$ be a map. Then the following conditions are equivalent:

- (1) $f: (X, \eta_1) \to (Y, \eta_2)$ is an L-fuzzy topogenous open map.
- (2) $\forall a \in M(L), f: (X, \eta_{1_{[a]}}) \to (Y, \eta_{2_{[a]}})$ is an L-topogenous open map.
- (3) $\forall a \in L, f: (X, \eta_1^{[a]}) \to (Y, \eta_2^{[a]})$ is an L-topogenous open map. (4) $\forall a \in P(L), f: (X, \eta_1^{[a]}) \to (Y, \eta_2^{[a]})$ is an L-topogenous open map.

Proof. (1) \Rightarrow (2): This part is obvious.

(2) \Rightarrow (1): For a given $(\lambda, \rho) \in L^Y \times L^Y$, if $\eta_1(\lambda, \rho) = \bot$, then clearly, $\eta_2(f^{\rightarrow}(\lambda), f^{\rightarrow}(\rho)) \geq \eta_1(\lambda, \rho),$ If $\eta_1(\lambda, \rho) > \perp$ then since $\eta_1(\lambda, \rho) =$ $\bigvee M(\eta_1(\lambda,\rho))$, we have $\eta_2(f^{\rightarrow}(\lambda), f^{\rightarrow}(\rho)) \geq a$ for each $a \in M(\eta_1(\lambda,\rho))$. Hence

$$\eta_2(f^{\rightarrow}(\lambda), f^{\rightarrow}(\rho)) \ge \bigvee \{a \mid a \in M(\eta_1(\lambda, \rho))\} = \eta_1(\lambda, \rho).$$

 $(1) \Rightarrow (3): \forall (\lambda, \rho) \in L^Y \times L^Y$. From part (1) of the theorem and Lemma 2.4, we have $\alpha(\eta_2(f^{\rightarrow}(\lambda), f^{\rightarrow}(\rho))) \subset \alpha(\eta_1(\lambda, \rho))$. It follows that $a \notin$ $\alpha(\eta_2(f^{\rightarrow}(\lambda), f^{\rightarrow}(\rho)))$ if for each $a \notin \alpha(\eta_1(\lambda, \rho))$. In other words, $(f^{\rightarrow}(\lambda), f^{\rightarrow}(\rho)) \in \mathbb{C}$ $\eta_2^{[a]}$ if for each $(\lambda, \rho) \in \eta_1^{[a]}$ for each $a \in L$. Hence statement (3) holds.

 $(3) \Rightarrow (4)$: This is obvious.

(4) \Rightarrow (1): For $\forall a \in P(L)$ and $(\lambda, \rho) \in L^Y \times L^Y$, from part (4) of the theorem if $a \notin \alpha(\eta_1(\lambda, \rho))$, then $a \notin \alpha(\eta_2(f^{\rightarrow}(\lambda), f^{\rightarrow}(\rho)))$. Thus $\alpha^*(\eta_2(f^{\rightarrow}(\lambda), f^{\rightarrow}(\rho))) \subset \alpha^*(\eta_1(\lambda, \rho)).$ We have from Lemma 2.4 that $\eta_2(f^{\rightarrow}(\lambda), f^{\rightarrow}(\rho)) \geq \eta_1(\lambda, \rho)$. Hence the proof is completed.

Definition 5.5.

Let (X, η_1) and (Y, η_2) be two L-fuzzy topogenous orders. Let f: $X \to Y$ be a map. $f: (X, \eta_1) \to (Y, \eta_2)$ is called an L-fuzzy topogenous homeomorphism if f is bijective and f and f^{\leftarrow} are L-fuzzy continuous maps.

Theorem 5.6.

Let (X, η_1) and (Y, η_2) be L-fuzzy topogenous orders and $f: X \to Y$ be a bijective map. Then the following conditions are equivalent:

(1) $f: (X, \eta_1) \to (Y, \eta_2)$ is an L-fuzzy topogenous homeomorphism.

(2) $\forall a \in M(L), f : (X, \eta_{1_{[a]}}) \to (Y, \eta_{2_{[a]}})$ is an L-topogenous homeomorphism.

(3) $\forall a \in L, f: (X, \eta_1^{[a]}) \to (Y, \eta_2^{[a]})$ is an L-topogenous homeomorphism

(4) $\forall a \in P(L), f : (X, \eta_1^{[a]}) \to (Y, \eta_2^{[a]})$ is an L-topogenous homeomorphism .

Proof. It follows from Definitions 5.1, 5.3, 5.5 and Theorems 5.2 and 5.4.

Acknowledgements.

The author expresses his sincere thanks to J. Zhang for your valuable suggestions which helped me for improve this paper greatly.

References

- G. Artico, R. Moresco, Fuzzy topogenous and totally bounded fuzzy uniformities, J. Math. Anal. Appl. 99 (1984), 320-337.
- G. Artico, R. Moresco, Fuzzy topogenous according with Lowen fuzzy uniformities, Fuzzy Sets and Systems 21 (1987), 85-98.
- 3. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- K. C. Chattopadhyay, U. K. Mukherjee, S.K. Samanta, Product of f-topogenous in fuzzy setting, Fuzzy Sets and Systems 121 (2001), 191-201.
- 5. G. Gierz et al., A Compendium of Continuous Lattices, Springer, Berlin (1980).
- 6. K. C. Chattopadhyay, S. K. Samanta, Fuzzy topology: fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems 54 (1993), 207-212.
- 7. U.Höhle and A. Šostak, Axiomatic Foundations of Fixed-Basis fuzzy topology, The Handbooks of Fuzzy sets series, Volume 3, Kluwer Academic Publishers, Dordrecht (1999).
- B. Hutton, Normality in fuzzy topological spaces, J. Math. Anal. Appl 50 (1975), 74-79.
- Katsaras, A. K., Fuzzy syntopogenous structures compatible with Lowen fuzzy uniformities and Artico-Moresco fuzzy proximities, Fuzzy set and system 36 (1990), 375-393.
- Katsaras, A. K., Operations on fuzzy syntopogenous structures, Fuzzy set and system 47 (1991), 199-218.
- 11. Katsaras, A.K., and Petalas, C.G., A unified theory of fuzzy topologies, fuzzy proximities and fuzzy uniformities, Rev. Roum. Math. Pure Appl. 28 (1983), 845-856.
- 12. Katsaras, A.K., and Petalas, C.G., On fuzzy syntopogenous structures, J. Math. Anal. Appl. **99** (1983), 219-236.
- Katsaras, A.K., On fuzzy syntopogenous spaces, Rev. Roum. Math. Pures Appl. 30 (1985), 419-431.
- 14. Katsaras, A.K., Totally bounded fuzzy syntopogenous structures, Fuzzy sets and system 28 (1988), 91-105.
- 15. Y.M. Liu, M.K. Luo, Fuzzy Topology, World Scientific Publishing, Singapore (1999).
- R. Lowen, Fuzzy topological spaces and fuzzy compactness, Math. Anal. Appl. 56 (1976), 621-633.
- 17. A. A. Ramadan, and M. El-Dardery, *fuzzifying syntopogenous structures*, Fuzzy Mathematics **10(4)** (2002), 1169-1180.

- A. A. Ramadan, M. Abdel-Sattar, M. El-Dardery and Y.C. Kim, *fuzzy topogenous spaces and fuzzy Quasi-uniform spaces*, Fuzzy Mathematics 11(1) (2003), 125-138.
- A. A. Ramadan, Y.C. Kim and M.K. El-Gayyar, On fuzzy topogenous orders, Fuzzy Mathematics 11(2) (2003), 355-378.
- A. A. Ramadan, M. El-Dardery and Y.C. Kim, on fuzzy semi-topogenous structures, Fuzzy Mathematics 11(4) (2003), 769-790.
- A. A. Ramadan, M. El-Dardery and Y.C. Kim, on fuzzy syntopogenous structures, Fuzzy Mathematics 11(4) (2003), 791-810.
- S. K. Samanta, Fuzzy topogenous and fuzzy uniformities, Fuzzy Sets and Systems 70 (1995), 97-105.
- 23. F.G. Shi, Theory of L-nested sets and L-nested sets and its applications, Fuzzy Systems Math. 4 (1995), 63-72.
- F.G. Shi, L-fuzzy sets and prime element nested sets, J. Math. Res. Exposition 16 (1996), 398-402.
- F.G. Shi, Theory of molecular nested sets and its applications, J.Yantai Teachers Univ 1 (1996), 33-36.
- 26. R. Srivastava, On separation axioms in a newly defined fuzzy topology, Fuzzy sets and systems **62** (1994), 341-346.
- A.P. Šostak, On a fuzzy topological structure, Suppl. Rend. Circ. Mat Palermo Ser. II, 11 (1985), 89-103.
- A.P. Šostak, On some modifications of fuzzy topologies, Mat vesnik 41 (1989), 51-64.
- G. J.Wang, Theory of topological molecular lattices, Fuzzy Sets and Systems 47 (1992), 351-376.
- M. S. Ying, A new approach for fuzzy topology(I), Fuzzy Sets and Systems 39 (1991), 303-321.
- J. Zhang, F. G. Shi and C-Y. Zheng, On L-fuzzy topological spaces, Fuzzy Sets and Systems 149 (2005), 473-484.