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Abstract.
In this paper we study L-fuzzy topogenous orders, where L represents a

completely distributive lattice.We shall investigate the level decomposition
of L-fuzzy topogenous on X and the corresponding L-fuzzy topogenous
continuous maps. In addition, we shall establish the representation theo-
rems of L-fuzzy topogenous on X.
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1. Introduction

The concept of fuzzy topology was first define in 1968 by Chang [3]
and later redefined in a somewhat different way by Lowen [16] and by
Hutton [8]. According to Šostak[27], these definitions, a fuzzy topology
is a crisp subfamily of family of fuzzy sets and fuzziness in the concept
of openness of a fuzzy set has not been considered, which seems to be
a drawback in the process of fuzzification of the concept of topological
spaces. Therefore, Šostak introduced a new definition of fuzzy topology in
1985 [27], Later on he has developed the theory of fuzzy topological spaces
in [28]. After that, several authors [5-8,15,16,23-30] have reintroduced the
same definition and studied fuzzy topological spaces being unaware of
Šostak’s work. In [31] Zhang et al. investigated the level decomposition
of L-fuzzy topology and the corresponding L-fuzzy continuous maps also,
established the representation theorems of L-fuzzy topology. There have
been all kinds of studies about the theory of topogenous in a fuzzy set
theory (see [1,2,4,9-14,17-22], etc.). Now in the present paper, we study
the level decomposition of an L-fuzzy topogenous and the corresponding
L-fuzzy topogenous continuous maps. In addition, we also establish some
representation theorems for L-fuzzy topogenous on X. The main results
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of this paper are several representation theorems for L-fuzzy topogenous
on X, where L represents a completely distributive lattice. Based on
the results of this paper, we have also developed representation theorems
for the category L-FP which consists of L-fuzzy topogenous orders and
L-fuzzy topogenous continuous maps.

2. Preliminaries

Throughout this paper, L represents a completely distributive lattice
with the smallest element ⊥ and the greatest element >, where ⊥ 6= >.
We define M(L) to be the set of all non-zero ∨-irreducible (or coprime)
elements in L such that a ∈ M(L) iff a ≤ b∨ c implies a ≤ b or a ≤ c. Let
P (L) be the set of all non-unit prime elements in L such that a ∈ P (L) iff
a ≥ b ∧ c implies a ≥ b or a ≥ c. Finally, let X be a non-empty usual set,
and LX be the set of all L-fuzzy sets on X. For each a ∈ L, let a denote
a constant-valued L-fuzzy set with a as its value. Let ⊥ and > be the
smallest element and greatest element in LX , respectively. for the empty
set φ ⊂ L, we define ∧φ = > and ∨φ = ⊥.

Defnition 2.1[29].

Suppose that a ∈ L and A ⊂ L.

(1) A is called a maximal family of a if
(a) inf A = a,

(b) ∀B ⊂ L, inf B ≤ a implies that ∀x ∈ A there exists y ∈ B such
that y ≤ x.

(2) A is called a minimal family of a if

(a) sup A = a,

(b) ∀B ⊂ L, sup B ≥ a implies that ∀x ∈ A there exists y ∈ B such
that y ≥ x.

Remark 2.2.[8].
Hutton proved that if L is a completely distributive lattice and a ∈ L,

then there exists B ⊂ L such that

(i) a =
∨

B, and

(ii) if A ⊂ L and a =
∨

A, then for each b ∈ B there is a c ∈ A such
that b ≤ c.

However, if ∀a ∈ L, and if there exists B ⊂ L satisfying (i) and (ii), then
in general L is not a completely distributive lattice. To this end,Wang [23]
introduced the following modification of condition (ii),
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(ii’) if A ⊂ L and a ≤
∨

A, then for each b ∈ B there is a c ∈ A such
that b ≤ c.

Wang proved that a complete lattice L is completely distributive if and
only if for each element a ∈ L, there exists B ⊂ L satisfying (i) and (ii).
Such a set B is called a minimal set of a by Wang [31].The concept of
maximal family is the dual concept of minimal family, and a complete
lattice L is completely distributive if and only if for each element a ∈ L,
there exists a maximal family B ⊂ L.

Let α(a) denote the union of all maximal families of a. Likewise, let β(a)
denote the union of all minimal sets of a. Finally, let α∗(a) = α(a)∩P (L)
and β∗(a) = β(a) ∩ M(L). One can easily see that both α(a) and α∗(a)
are maximal sets of a. Likewise, both β(a) and β∗(a) are minimal sets of
a. Also, we have α(>) = φ. and β(⊥) = φ.

Definition 2.3. (Katsaras [9])
A binary relation η on LX is an L-semi-topogenous order on X, if it

satisfies the following axioms:
(T1) (>,>), (⊥,⊥) ∈ η,
(T2) If (λ, µ) ∈ η, then λ ≤ µ,
(T3) If λ ≤ λ1, µ1 ≤ µ and (λ1, µ1) ∈ η, then (λ, µ) ∈ η,
An L-fuzzy semi-topogenous order is called
(I) L-fuzzy topogenous if
(T4) (λ ∨ µ, γ) ∈ η iff (λ, γ) ∈ η, (µ, γ) ∈ η
(T5) (λ, µ ∧ γ) ∈ η iff (λ, µ) ∈ η, (λ, γ) ∈ η.
(II) Perfect if
(T6) (λi, µ) ∈ η for any {µ, λi | i ∈ ∆} ⊂ LX implies (

∨

i∈∆ λi, µ) ∈ η,
(III) Co-perfect if
(T7) (λ, µi) ∈ η for any {µi, λ | i ∈ ∆} ⊂ LX implies (λ,

∧

i∈∆ µi) ∈ η,
(IV) Biperfect if it is perfect and biperfect.

As in (Shi [23-25] and Wang [29]) we give the following Lemma:

Lemma 2.4.
For a ∈ L and a map η : LX × LX → L, we define

η[a] = {(λ, µ) ∈ LX × LX | η(λ, µ) ≥ a}

and
η[a] = {(λ, µ) ∈ LX × LX | a /∈ α(η(λ, µ))}

Let η be a map from LX × LX to L and a, b ∈ L. Then
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(1) a ∈ β(b) ⇒ η[b] ⊂ η[a]; a ∈ α(b) ⇒ η[a] ⊂ η[b].
(2) a ≤ b ⇔ β(a) ⊂ β(b) ⇔ β∗(a) ⊂ β∗(b) ⇔ α(b) ⊂ α(a) ⇔ α∗(b) ⊂

α∗(a).
(3) α(

∧

i∈4 ai) =
⋃

i∈4 α(ai) and β(
∨

i∈4 ai) =
⋃

i∈4 β(ai) for any

sub-family {ai}i∈4 ⊂ L

3. Level decomposition of an L-fuzzy topogenous

Definition 3.1[13].
A map η : LX ×LX → L is called an L-fuzzy semi-topogenous order on

X if it satisfies the following conditions:
(FT1) η(>,>) = η(⊥,⊥) = >,
(FT2) If η(λ, µ) 6= ⊥, then λ ≤ µ,
(FT3) If λ ≤ λ1, µ1 ≤ µ then η(λ1, µ1) ≤ η(λ, µ).
An L-fuzzy semi-topogenous order is called
(I) L-fuzzy topogenous if
(FT4) η(λ ∨ µ, γ) ≥ η(λ, γ) ∧ η(µ, γ),
(FT5) η(λ, µ ∧ γ) ≥ η(λ, µ) ∧ η(λ, γ).
(II) Perfect if
(FT6) η(

∨

i∈∆ λi, µ) ≥
∧

i∈∆ η(λi, µ), for any {µ, λi | i ∈ ∆} ⊂ LX .
(III) Co-perfect if
(FT7) η(λ,

∧

i∈∆ µi) ≥
∧

i∈∆ η(λi, µ), for any {λ, µi | i ∈ ∆} ⊂ LX .
(IV) Biperfect if it is perfect and biperfect.
The pair (X, η) is said to be an L-fuzzy topogenous space. Just as an L-

topogenous on X is an ordinary subset of LX×LX , an L-fuzzy topogenous
on X is a fuzzy subset of LX × LX .

Remark 3.2.
(1) If η : 2X × 2X → I where I = [0, 1] such that the above conditions

hold respectively, we call it a fuzzifying topogenous on X in a sense [17].
(2) We easily show that every L-fuzzy topogenous order is a Katsaras’s

fuzzy topogenous order [9].

Theorem 3.3.
Let η be a map η : LX × LX → L. Then the following conditions are

equivalent:
(1) η is an L-fuzzy topogenous on X.
(2) ∀a ∈ M(L), η[a] is an L-topogenous on X.

(3) ∀a ∈ L, η[a] is an L-topogenous on X.
(4) ∀a ∈ P (L), η[a] is an L-topogenous on X.
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proof. (1) ⇒ (2): this part is obvious.
(2) ⇒ (1): (FT1) For each a ∈ M(L), we have (>,>) ∈ η[a], and

η(>,>) ≥ a. Accordingly,

η(>,>) ≥
∨

{a | a ∈ M(L)} = >.

Thus, η(>,>) = >. Similarly η(⊥,⊥) = >.
(FT2) Directly from (T2).
(FT3) Let λ, λ1, µ1, µ ∈ LX with λ ≤ λ1, µ1 ≤ µ. Clearly, when

η(λ1, µ1) = ⊥, we have η(λ1, µ1) ≤ η(λ, µ).Otherwise if η(λ1, µ1) > ⊥,
then for each η(λ1, µ1) ≥ a, we have η(λ1, µ1) ∈ η[a]. Consequently, we
have η(λ, µ) ∈ η[a] or η(λ, µ) ≥ a. This further implies that

η(λ, µ) ≥
∨

{a ∈ M(L) | η(λ1, µ1) ≥ a} = η(λ1, µ1).

(FT4) Let λ, µ, γ ∈ LX . Clearly, when η(λ, γ) ∧ η(µ, γ) = ⊥, we have
η(λ ∨ µ, γ) ≥ η(λ, γ) ∧ η(µ, γ) Otherwise if η(λ, γ) ∧ η(µ, γ) > ⊥,then
for each η(λ, γ) ∧ η(µ, γ) ≥ a, we have η(λ, γ) ≥ a and η(µ, γ) ≥ a or
η(λ, γ) ∈ η[a] and η(µ, γ) ∈ η[a]. Consequently, we have (λ ∨ µ, γ) ∈ η[a]

and so (λ ∨ µ, γ) ≥ a This further implies that

η(λ ∨ µ, γ) ≥
∨

{a ∈ M(L) | η(λ, γ) ∧ η(µ, γ) ≥ a} = η(λ, γ) ∧ η(µ, γ).

(FT5) Similar to (FT4).

(1) ⇒ (3):
(T1) ∀a ∈ L, since η(>,>) = η(⊥,⊥) = >, and α(>) = φ, we have

a 6∈ α(>) = α(η(>,>)) = α(η(⊥,⊥)). Thus (>,>), (⊥,⊥) ∈ η[a]

(T2) Directly from (FT2)
(T3) Let λ, λ1, µ1, µ ∈ LX with λ ≤ λ1, µ1 ≤ µ and (λ1, µ1) ∈ η[a].

Then
a 6∈ α(η(λ1, µ1)) ⊃ α(η(λ, µ))

Hence (λ, µ) ∈ η[a].
(T4) Let (λ, γ), (µ, γ) ∈ η[a]. Then a 6∈ α(η(λ, γ)) and a 6∈ α(η(µ, γ)).

Hance

a 6∈ α(η(λ, γ)) ∪ α(η(µ, γ)) = α(η(λ, γ) ∧ η(µ, γ)) ⊃ α(η(λ ∨ µ, γ).
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Furthermore, since a 6∈ α(η(λ ∨ µ, γ)), we have (λ ∨ µ, γ) ∈ η[a].
(T5) Similar to (T4).

(3) ⇒ (4): this part is obvious.

(4) ⇒ (1):

(FT1) ∀a ∈ P (L), it is clear that (>,>) ∈ η[a]. Thus a 6∈ α(η(>,>)).
Then α∗(η(>,>)) = φ and

η(>,>) =
∧

α∗(η(>,>)) = >.

Similarly η(⊥,⊥) = >.
(FT2) Directly from (T2).
(FT3) Let λ, λ1, µ1, µ ∈ LX with λ ≤ λ1, µ1 ≤ µ. Clearly, when

η(λ1, µ1) = ⊥, we have η(λ1, µ1) ≤ η(λ, µ).Otherwise if η(λ1, µ1) > ⊥,
then for each a ∈ P (L) and a 6∈ α(η(λ1, µ1)),we have (λ1, µ1) ∈ η[a].
Consequently, we have (λ, µ) ∈ η[a] hence a /∈ α(η(λ, µ)).Accordingly, we
have α∗(η(λ1, µ1) ⊃ α∗(η(λ, µ) or η(λ1, µ1) ≤ η(λ, µ)

(FT4) Let λ, µ, γ ∈ LX . Clearly, when η(λ, γ) ∧ η(µ, γ) = ⊥, we have
η(λ ∨ µ, γ) ≥ η(λ, γ) ∧ η(µ, γ) Otherwise if η(λ, γ) ∧ η(µ, γ) > ⊥,then for
each a ∈ P (L) and a 6∈ α(η(λ, γ) ∧ η(µ, γ)) = α(η(λ, γ) ∪ α(η(µ, γ)), we
have a 6∈ α(η(λ, γ)) and a 6∈ α(η(µ, γ)), implise η(λ, γ) ∈ η[a] and η(µ, γ) ∈
η[a] and so η(λ∨µ, γ) ∈ η[a] hence a 6∈ α(η(λ∨µ, γ)). Accordingly, we have
α∗(η(λ, γ) ∧ η(µ, γ)) ⊃ α∗(η(λ ∨ µ, γ)), or η(λ ∨ µ, γ) ≥ η(λ, γ) ∧ η(µ, γ).

(FT5) Similar to (FT4).

Theorem 3.3.
Let η be a map η : LX × LX → L be an L-fuzzy topogenous on X.

Then the following conditions are equivalent:
(1) η is an L-fuzzy biperfect topogenous on X.
(2) ∀a ∈ M(L), η[a] is an L-biperfect topogenous on X.

(3) ∀a ∈ L, η[a] is an L-biperfect topogenous on X.

(4) ∀a ∈ P (L), η[a] is an L-biperfect topogenous on X.

proof. (1) ⇒ (2): this part is obvious.
(2) ⇒ (1):
(FT6) Let {µ, λi | i ∈ ∆} ⊂ LX . Then for each a ∈ M(L) and

a ≤
∧

i∈∆ η(λi, µ), we have η(λi, µ) ≥ a and (λi, µ) ∈ η[a] for each i ∈ ∆.



ON L-FUZZY TOPOGENOUS ORDERS 7

The proof follows because (
∨

i∈∆ λi, µ) ∈ η[a] and

η(
∨

i∈∆

λi, µ) ≥
∨

{a ∈ M(L) | a ≤
∧

i∈∆

η(λi, µ)} =
∧

i∈∆

η(λi, µ).

(FT7) Let {µi, λ | i ∈ ∆} ⊂ LX . Then for each a ∈ M(L) and
a ≤

∧

i∈∆ η(λ, µi), we have η(λ, µi) ≥ a and (λ, µi) ∈ η[a] for each i ∈ ∆.
The proof follows because (λ,

∧

i∈∆ µi) ∈ η[a] and

η(λ,
∧

i∈∆

µi) ≥
∨

{a ∈ M(L) | a ≤
∧

i∈∆

η(λ, µi)} =
∧

i∈∆

η(λ, µi).

(1) ⇒ (3):
(T6) Let (λi, µ) ∈ η[a]. Then a /∈ α(η(λi, µ)) for each i ∈ ∆ and

a /∈
⋃

i∈∆

α(η(λi, µ)) = α(
∧

i∈∆

η(λi, µ)) ⊃ α(η(
∨

i∈∆

λi, µ)).

Consequently, we have a /∈ α(η(
∨

i∈∆ λi, µ)) or (
∨

i∈∆ λi, µ) ∈ η[a]

(T7) Let (λ, µi) ∈ η[a]. Then a /∈ α(η(λ, µi)) for each i ∈ ∆ and

a /∈
⋃

i∈∆

α(η(λ, µi)) = α(
∧

i∈∆

η(λ, µi)) ⊃ α(η(λ,
∧

i∈∆

µi)).

Consequently, we have a /∈ α(η(λ,
∧

i∈∆ µi)) or (λ,
∧

i∈∆ µi) ∈ η[a]

(3) ⇒ (4): this part is obvious.

(4) ⇒ (1):
(FT6) Let {µ, λi | i ∈ ∆} ⊂ LX . Obviously if

∧

i∈∆ η(λi, µ) = ⊥, then
η(

∨

i∈∆ λi, µ) ≥
∧

i∈∆ η(λi, µ). Suppose now that
∧

i∈∆ η(λi, µ) > ⊥.
Then ∀a ∈ P (L) and a /∈ α(

∧

i∈∆ η(λi, µ)) =
⋃

i∈∆ α(η(λi, µ)). It follows

that a /∈ (α(η(λi, µ)) for each i ∈ ∆ implies (λi, µ) ∈ η[a] for each i ∈ ∆
and so (

∨

i∈∆ λi, µ) ∈ η[a]. Hence

α∗(η(
∨

i∈∆

λi, µ)) ⊂ α∗(
∧

i∈∆

η(λi, µ)).
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Therefore
η(

∨

i∈∆

λi, µ) ≥
∧

i∈∆

η(λi, µ).

(FT7) Let {µi, λ | i ∈ ∆} ⊂ LX . Obviously if
∧

i∈∆ η(λ, µi) = ⊥, then
η(λ,

∧

i∈∆ µi) ≥
∧

i∈∆ η(λi, µ). Suppose now that
∧

i∈∆ η(λ, µi) > ⊥.
Then ∀a ∈ P (L) and a /∈ α(

∧

i∈∆ η(λ, µi)) =
⋃

i∈∆ α(η(λ, µi)). It follows

that a /∈ (α(η(λ, µi)) for each i ∈ ∆ implies (λ, µi) ∈ η[a] for each i ∈ ∆
and so (λ,

∧

i∈∆ µi) ∈ η[a]. Hence

α∗(η(λ,
∧

i∈∆

µi)) ⊂ α∗(
∧

i∈∆

η(λ, µi)).

Therefore
η(λ,

∧

i∈∆

µi) ≥
∧

i∈∆

η(λ, µi).

We can now state the following decomposition theorem of L-fuzzy to-
pogenous. The proof is straightforward and therefore omitted.

Theorem 3.4..
Let η be an L-fuzzy topogenous on X. Then

η =
∨

a∈L

(a ∧ η[a]) =
∨

a∈M(L)

(a ∧ η[a]) =
∧

a∈L

(a ∨ η[a]) =
∧

a∈P(L)

(a ∨ η[a])

Corollary 3.5..
Let η1 and η2 be L-fuzzy topogenous’s on X, then the following condi-

tions are equivalent:
(1) η1 = η2.
(2) ∀a ∈ L, η1[a]

= η2[a]
.

(3) ∀a ∈ M(L), η1[a]
= η2[a]

.

(4) ∀a ∈ L, η
[a]
1 = η

[a]
2 .

(5) ∀a ∈ P (L), η
[a]
1 = η

[a]
2 .

Theorem 3.6.
Let η be an L-fuzzy topogenous on X, then
(1) a ∈ L, η[a] =

⋂

b∈β(a) η[b].

(2) ∀a ∈ M(L), η[a] =
⋂

b∈β∗(a) η[b].

(3) a ∈ L, η[a] =
⋂

a∈α(b) η
[b].

(4) ∀a ∈ P (L), η[a] =
⋂

a∈α∗(a),b∈P(L) η[b].
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Proof.

(1)By Lemma 2.4, we have that ∀a ∈ L, η[a] ⊂
⋂

b∈β(a) η[b]. To show

that η[a] ⊃
⋂

b∈β(a) η[b], we take (λ, ρ) ∈ LX ×LX and (λ, ρ) ∈
⋂

b∈β(a) η[b].

Notice that ∀b ∈ β(a), η(λ, ρ) ≥ b. Hence η(λ, ρ) ≥
∨

{

b | b ∈ β(a)
}

= a,
which implies that (λ, ρ) ∈ η[a].

(2) The proof is similar to (1).

(3)By Lemma 2.4, we have that ∀a ∈ L, η[a] ⊂
⋂

a∈α(b) η[b]. To show

that η[a] ⊃
⋂

a∈α(b) η[b], we take (λ, ρ) ∈ LX×LX and (λ, ρ) ∈
⋂

a∈α(b) η[b].

Notice that ∀b ∈ L and a ∈ α(b), it follows that b /∈ α(η(λ, ρ)). We
prove by contradiction as follows. Suppose that a ∈ α(η(λ, ρ)). Notice
that η(λ, ρ) =

∧
{

b | b ∈ α(η(λ, ρ))
}

and α(η(λ, ρ)) =
⋃

{

α(b) | b ∈

α(η(λ, ρ))
}

. There must exist b ∈ α(η(λ, ρ)) such that a ∈ α(b). But this
is impossible.

(4) The proof is similar to (3).

Remark 3.7.

(1) b ∈ β(a) implies b � a, where b � is way-below relation [6], i.e.
b � a if and only if for every up-directed set S in L,

∨

S ≥ a implies that
there exists s ∈ S such that s ≥ b;

(2) If a ∈ M(L), then b ∈ β∗(a) if and only if b � a.

(3) ∀a ∈ M(L), η[a] =
⋂

b∈β∗ η[b] ⇔ η[a] =
⋂

b�a,b∈M(L) η[b].

Proof.

(1) Since β(a) is a minimal set of a, from Definition 2.1, we have that
for every up-directed set S in L, if

∨

S ≥ a, then ∀b ∈ β(a) there exists
s ∈ S such that s ≥ b. It follows that b � a.

(2) Let a ∈ M(L) and b � a. From Theorems 1.3.6 and 1.3.8 in [15]
and Definition 2.1, we know that β∗(a) is both an up-directed set and

a lower set, and
∨

β∗(a) = a. Hence, there exists b
′

∈ β∗(a) such that

a ≥ b
′

≥ b. In other words, b ∈ β∗(a). Conversely, if b ∈ β∗(a), then since
β∗(a) ⊂ β(a) and b ∈ β∗(a) implies b ∈ β(a). It follows that b � a.

(3) It is obvious.

Theorem 3.8.

Let
{

η[a] | a ∈ M(L)
}

be a family of L-topogenous’s on X. Then the
following conditions are equivalent:

(1) There exists an L-fuzzy topogenous η on X such that η[a] = ηa for
each a ∈ M(L).
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(2) ∀a ∈ M(L), ηa =
⋂

b∈β∗(a) ηb.

Proof. (1) ⇒ (2): This holds because of Theorem 3.5.
(2) ⇒ (1): Let η =

∨

a∈M(L)(a∧ ηa). Obviously, we have ηa ⊂ η[a]. For

any (λ, ρ) ∈ η[a], we have η(λ, ρ) ≥ a and
∨

{

b ∈ M(L) | (λ, ρ) ∈ ηb

}

≥ a.
Next, since β∗(a) is a minimal family of a, for each b ∈ β∗(a), there

exists b
′

∈ M(L) such that b ≥ b
′

and (λ, ρ) ∈ ηb
′ ⊂ ηb. Therefore,

⋂

b∈β∗(a) ηb = ηa.

Similarly, we can state the following theorems.

Theorem 3.9. Let
{

ηa | a ∈ P (L)
}

be a family of L-topogenous’s on X.
Then the following conditions are equivalent:

(1) There exists an L-fuzzy topogenous η on X such that η[a] = ηa for
each a ∈ P (L).

(2) ∀a ∈ P (L), ηa =
⋂

a∈α∗(b) ηb.

Theorem 3.10. Let
{

ηa | a ∈ L
}

be a family of L-topogenous’s on X.
Then the following conditions are equivalent:

(1) There exists an L-fuzzy topogenous η on X such that η[a] = ηa for
each a ∈ L.

(2) ∀a ∈ L, ηa =
⋂

b∈β(a) ηb.

Theorem 3.11. Let
{

ηa | a ∈ L
}

be a family of L-topogenous’s on X.
Then the following conditions are equivalent:

(1) There exists an L-fuzzy topogenous η on X such that η[a] = ηa for
each a ∈ L.

(2) ∀a ∈ L, ηa =
⋂

a∈α(b) ηb.

4. Representation theorems of L-fuzzy topogenous’s

Let LT [X] denote the family of all L-topogenous’s on X. Let LFT [X]
denote the family of all L-fuzzy topogenous’s on X. The order relation on
LFT [X] is defined as follow:

∀η1, η2 ∈ LFT [X], η1 � η2 ⇔ ∀(λ, ρ) ∈ LX × LX , η1(λ, ρ) ≤ η2(λ, ρ).

Theorem 4.1.
(LFT [X],�) is a complete lattice. In fact, it is a complete sub-meet-

semilattice of LLX×LX

, i.e. closed under the ∧ of LLX×LX

.



ON L-FUZZY TOPOGENOUS ORDERS 11

Proof. Let X be a set. Define two maps η : LX × LX → L as follows:

η0(λ, ρ) =

{

>, if λ = ⊥ or ρ = >,

⊥, otherwise,

η1(λ, ρ) =

{

>, if λ ≤ ρ,

⊥, otherwise.

Clearly, we have η0, η1 ∈ LFT [X], and they are the smallest element and
the greatest element in (LFT [X],�L), respectively. Next, let

{

ηi | i ∈

∆
}

⊂ LFT [X] and η =
∧�L

i∈∆ ηi. Obvious η ∈ LFT [X]. Accordingly,
(LFT [X],�) is a complete lattice.

To facilitate further illustration, let us define the following classes:

UL[X] =
{

F : L → LT [X] | ∀a ∈ L,F (a) = ∩a∈α(b)F (b)
}

UL[X] =
{

F : L → LT [X] | ∀a ∈ L,F (a) = ∩b∈β(a)F (a)
}

UM(L)[X] =
{

F : M(L) → LT [X] | ∀a ∈ M(L), F (a) = ∩b∈β∗(a)F (b)
}

UP(L)[X] =
{

F : P (L) → LT [X] | ∀a ∈ P (L), F (a) = ∩a∈α∗(b)F (b)
}

In addition, let us define the following order relations within the classes
UL[X], UL[X],UM(L)[X] and UP(L)[X]:

F1, F2 ∈ UL[X], F1 �L F2 ⇔ ∀a ∈ L,F1(a) ⊂ F2(a)

F1, F2 ∈ UL[X], F1 �L F2 ⇔ ∀a ∈ L,F1(a) ⊂ F2(a)

F1, F2 ∈ UM(L)[X], F1 �M(L) F2 ⇔ ∀a ∈ M(L), F1(a) ⊂ F2(a)

F1, F2 ∈ UP(L)[X], F1 �P(L) F2 ⇔ ∀a ∈ P (L), F1(a) ⊂ F2(a)
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Theorem 4.2.
(UL[X],�L), (UL[X],�L), (UM(L)[X],�M(L)) and (UP(L)[X],�P(L))

are complete lattices. Obviously, (UL[X],�L) and (UL[X],�L) are com-
plete sub-meet-semilattices of the lattice (LT [X])L (i.e., closed under the

∧ of (LT [X])L, when
{

Fi | i ∈ ∆
}

⊂ UL[X], F =
∧�L

i∈∆ Fi be defined
as ∀a ∈ L,F (a) =

⋂

i∈∆ Fi(a), (UM(L)[X],�M(L)) is a complete sub-

meet-semilattices of the lattice (LT [X])M(L), and (UP(L)[X]),�p(L)) is a

complete sub-meet-semilattices of the lattice (LT [X])P(L) .

Proof. ∀a ∈ L, let us define F⊥(a) =
{

(λ, ρ) | λ = ⊥, ρ = >
}

and

F>(a) =
{

(λ, ρ) | λ ≤ ρ
}

. Clearly, we have F⊥(a), F>(a) ∈ UL[X], and

they are the smallest element and the greatest element in (UL[X],�L),

respectively. Next, let
{

Fi | i ∈ ∆
}

⊂ UL[X] and F =
∧�L

i∈∆ Fi. Since

F (a) =
⋂

i∈∆

Fi(a) =
⋂

i∈∆

⋂

a∈α(b)

Fi(b) =
⋂

a∈α(b)

⋂

i∈∆

Fi(b) =
⋂

a∈α(b)

F (b),

it follows that F ∈ UL[X]. Accordingly, (UL[X],�L) is a complete lattice.
The same argument can be used to prove the rest of the theorem.

The following representation theorem of L-fuzzy topogenous follows
naturally.

Theorem 4.3.
The map f : LFT [X] → UL[X], η 7→ Fη (for every a ∈ L and Fη(a) =

η[a] is an isomorphism in the category of complete meet-semilattices and
f← : UL[X] → LFT [X], F 7→ ηF =

∧

a∈L(a ∨ F (a)).

Proof.
For each η ∈ LFT [X], it is easy to verify that

Fη(a) = η[a] =
⋂

a∈α(b)

η[b] =
⋂

a∈α(b)

Fη(b)

Hence, Fη ∈ UL[X]. Next, by Theorems 3.3, 3.4 and Corollary 3.5, it

suffices to show that f is an injection. Since (λ, ρ) /∈ (ηF )[c] iff

α((ηF (λ, ρ)) =
⋃

a∈L

α((a ∨ F (a))((λ, ρ)) =
⋃

{

α(a) | a ∈ L, (λ, ρ) /∈ F (a)
}
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iff there exists a ∈ L such that c ∈ α(a) and (λ, ρ) /∈ F (a) iff (λ, ρ) /∈
⋂

c∈α(a) F (a) = F (c), we have FηF
(c) = η

[c]
F = F (c). This shows that

FηF
= F . It follows that f is a surjection as well as a bijection, and

f← : UL[X] → LFT [X], F 7→ ηF =
∧

a∈L

(a ∨ F (a))

Next, let η1, η2 ∈ LFT [X] and
{

ηi | i ∈ ∆
}

⊂ LFT [X]. Then it

is straightforward to show that f(η1) �L f(η2) when η1 � η2. Hence

f(
∧

i∈∆ ηi) =
∧�L

i∈∆ f(ηi) and the proof is complete.

The following Theorem follows directly from the above proof.

Theorem 4.4.
The map f : LFT [X] → UP(L)[X], η 7→ Fη (for every a ∈ P (L)

and Fη(a) = η[a] is an isomorphism in the category of complete meet-
semilattices and f← : UP(L)[X] → LFT [X], F 7→ ηF =

∧

a∈P(L)(a∨F (a)).

Theorem 4.5.
The map f : LFT [X] → UL[X], η 7→ Fη (for every a ∈ L and Fη(a) =

η[a] is an isomorphism in the category of complete meet-semilattices and

f← : UL[X] → LFT [X], F 7→ ηF =
∧

a∈L(a ∨ F (a)).

Proof.
For each η ∈ LFT [X], it is easy to verify that

Fη(a) = η[a] =
⋂

b∈β(a)

η[b] =
⋂

b∈β(a)

Fη(b)

Hence, Fη ∈ UL[X]. Next, by Theorems 3.4 and Corollary 3.5, it suffices
to show that f is an injection. It is proved easily that (λ, ρ) ∈ (ηF )[c] iff

ηF ((λ, ρ)) =
∨

a∈L

(a ∧ F (a))((λ, ρ)) =
∨

{

a | (λ, ρ) ∈ F (a)
}

≥ c

iff (because of Lemma 2.4)

⋃

(λ,ρ)∈F (a)

β(a) = β(
∨

{

a | (λ, ρ) ∈ F (a)
}

) ⊃ β(c)
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On the other hand, we can prove

(λ, ρ) ∈ F (c) =
⋂

a∈β(α)

F (a) ⇔ ∀a ∈ β(α), (λ, ρ) ∈ F (a) ⇔
⋃

(λ,ρ)∈F (a)

β(a) ⊃ β(c)

Clearly, ∀a ∈ β(α), (λ, ρ) ∈ F (a) ⇒
⋃

(λ,ρ)∈F (a) β(a) ⊃
⋃

a∈β(c) = β(c).

Conversely, for each d ∈ β(c) ⊂
⋃

(λ,ρ)∈F (a) β(a), then there exists a ∈ L

such that d ∈ β(a) and (λ, ρ) ∈ F (a) =
⋂

b∈β(a) F (b). It show that

(λ, ρ) ∈ F (d). So, we conclude that (λ, ρ) ∈ (ηF )[c] ⇔ (λ, ρ) ∈ F (c), i.e.,
FηF

(c) = (ηF )[c] = F (c). This shows that FηF
= F . It follows that f is a

surjection as well as a bijection, and

f← : UL[X] → LFT [X], F 7→ ηF =
∨

a∈L

(a ∧ F (a))

Next, let η1, η2 ∈ LFT [X] and
{

ηi | i ∈ ∆
}

⊂ LFT [X]. Then it

is straightforward to show that f(η1) �L f(η2) when η1 � η2. Hence

f(
∧

i∈∆ ηi) =
∧�L

i∈∆ f(ηi) and the proof is complete.

The following Theorem follows directly from the above proof.

Theorem 4.6.
The map f : LFT [X] → UM(L)[X], η 7→ Fη (for every a ∈ M(L)

and Fη(a) = η[a] is an isomorphism in the category of complete meet-
semilattices and f← : UM(L)[X] → LFT [X], F 7→ ηF =

∨

a∈M(L)(a ∧

F (a)).

5. L-fuzzy continuous topogenous maps

Definition 5.1.
Let (X, η1) and (Y, η2) be two L-fuzzy topogenous orders. Let f : X →

Y be a map. f : (X, η1) → (Y, η2) is called L-fuzzy topogenous continuous
map if for every (λ, ρ) ∈ LY × LY we have

η1(f
←(λ), f←(ρ)) ≥ η2(λ, ρ),

where f←(λ) = λ ◦ f .

From Definition 5.1, obviously, f : (X, η1) → (Y, η2) is an L-fuzzy
topogenous continuous if and only if ∀a ∈ M(L), f : (X, η1[a]

) → (Y, η2[a]
)

is an L-topogenous continuous map.
Excepting this, we have the followings equivalent conditions:
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Theorem 5.2.

Let (X, η1) and (Y, η2) be L-fuzzy topogenous orders and f : X → Y
be a map. Then the following conditions are equivalent:

(1) f : (X, η1) → (Y, η2) is an L-fuzzy topogenous continuous map.

(2) ∀a ∈ M(L), f : (X, η1[a]
) → (Y, η2[a]

) is an L-topogenous continuous
map.

(3) ∀a ∈ L, f : (X, η
[a]
1 ) → (Y, η

[a]
2 ) is an L-topogenous continuous map.

(4) ∀a ∈ P (L), f : (X, η
[a]
1 ) → (Y, η

[a]
2 ) is an L-topogenous continuous

map.

Proof. (1) ⇒ (2): This part is obvious.

(2) ⇒ (1): ∀(λ, ρ) ∈ LY × LY , a ∈ M(L) such that a ≤ η2(λ, ρ), we
have (λ, ρ) ∈ η2[a]

and (f←(λ), f←(ρ)) ∈ η1[a]
by the continuity of f :

(X, η1[a]
) → (Y, η2[a]

). Accordingly, η1(f
←(λ), f←(ρ)) ≥ a for each ∀a ∈

M(L) ∩ M(η2(λ, ρ)), where M(η2(λ, ρ)) =
{

a ∈ M(L) | a ≤ η2(λ, ρ)
}

. It
follows that η1(f

←(λ), f←(ρ)) ≥
∨

M(η2(λ, ρ)) = η2(λ, ρ).
(1) ⇒ (3): ∀(λ, ρ) ∈ LY × LY , since η1(f

←(λ), f←(ρ)) ≥ η2(λ, ρ), it
follows from Lemma 2.4 that a /∈ α(η1(f

←(λ), f←(ρ))) when ∀a ∈ L, if

a /∈ α(η2(λ, ρ)). In other words, if (λ, ρ) ∈ η
[a]
2 , then (f←(λ), f←(ρ)) ∈

η
[a]
1 . Thus f : (X, η

[a]
1 ) → (Y, η

[a]
2 ) is a fuzzy topogenous continuous map.

(3) ⇒ (4): This is obvious. (4) ⇒ (1): For ∀a ∈ P (L) and (λ, ρ) ∈

LY × LY , if a /∈ α(η2(λ, ρ), then (λ, ρ) ∈ η
[a]
2 . Thus (f←(λ), f←(ρ)) ∈

η
[a]
1 by the continuity of f : (X, η

[a]
1 ) → (Y, η

[a]
2 ). In other words, a /∈

α(η1(f
←(λ), f←(ρ))) and α∗(η1(f

←(λ), f←(ρ))) ⊂ α∗(η2(λ, ρ)). It follows
from Lemma 2.4 that

η1(f
←(λ), f←(ρ)) ≥ η2(λ, ρ)

Hence the proof is completed.

Definition 5.3.

Let (X, η1) and (Y, η2) be two L-fuzzy topogenous orders. Let f : X →
Y be a map. f : (X, η1) → (Y, η2) is called L-fuzzy topogenous open map
if for every (λ, ρ) ∈ LY × LY we have

η2(f
→(λ), f→(ρ)) ≥ η1(λ, ρ),
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Theorem 5.4.
Let (X, η1) and (Y, η2) be L-fuzzy topogenous orders and f : X → Y

be a map. Then the following conditions are equivalent:
(1) f : (X, η1) → (Y, η2) is an L-fuzzy topogenous open map.
(2) ∀a ∈ M(L), f : (X, η1[a]

) → (Y, η2[a]
) is an L-topogenous open map.

(3) ∀a ∈ L, f : (X, η
[a]
1 ) → (Y, η

[a]
2 ) is an L-topogenous open map.

(4) ∀a ∈ P (L), f : (X, η
[a]
1 ) → (Y, η

[a]
2 ) is an L-topogenous open map.

Proof. (1) ⇒ (2): This part is obvious.
(2) ⇒ (1): For a given (λ, ρ) ∈ LY × LY ,if η1(λ, ρ) = ⊥,then clearly,

η2(f
→(λ), f→(ρ)) ≥ η1(λ, ρ),. If η1(λ, ρ) > ⊥ then since η1(λ, ρ) =

∨

M(η1(λ, ρ)), we have η2(f
→(λ), f→(ρ)) ≥ a for each a ∈ M(η1(λ, ρ).

Hence

η2(f
→(λ), f→(ρ)) ≥

∨

{a | a ∈ M(η1(λ, ρ))} = η1(λ, ρ).

(1) ⇒ (3): ∀(λ, ρ) ∈ LY ×LY . From part (1) of the theorem and Lemma
2.4, we have α(η2(f

→(λ), f→(ρ))) ⊂ α(η1(λ, ρ)). It follows that a /∈
α(η2(f

→(λ), f→(ρ))) if for each a /∈ α(η1(λ, ρ)). In other words,(f→(λ), f→(ρ)) ∈

η
[a]
2 if for each (λ, ρ) ∈ η

[a]
1 for each a ∈ L. Hence statement (3) holds.

(3) ⇒ (4): This is obvious.
(4) ⇒ (1): For ∀a ∈ P (L) and (λ, ρ) ∈ LY × LY , from part (4) of

the theorem if a /∈ α(η1(λ, ρ)), then a /∈ α(η2(f
→(λ), f→(ρ))). Thus

α∗(η2(f
→(λ), f→(ρ))) ⊂ α∗(η1(λ, ρ)). We have from Lemma 2.4 that

η2(f
→(λ), f→(ρ)) ≥ η1(λ, ρ),. Hence the proof is completed.

Definition 5.5.
Let (X, η1) and (Y, η2) be two L-fuzzy topogenous orders. Let f :

X → Y be a map. f : (X, η1) → (Y, η2) is called an L-fuzzy topogenous
homeomorphism if f is bijective and f and f← are L-fuzzy continuous
maps.

Theorem 5.6.
Let (X, η1) and (Y, η2) be L-fuzzy topogenous orders and f : X → Y

be a bijective map. Then the following conditions are equivalent:
(1) f : (X, η1) → (Y, η2) is an L-fuzzy topogenous homeomorphism .
(2) ∀a ∈ M(L), f : (X, η1[a]

) → (Y, η2[a]
) is an L-topogenous homeo-

morphism .

(3) ∀a ∈ L, f : (X, η
[a]
1 ) → (Y, η

[a]
2 ) is an L-topogenous homeomorphism

.
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(4) ∀a ∈ P (L), f : (X, η
[a]
1 ) → (Y, η

[a]
2 ) is an L-topogenous homeomor-

phism .

Proof. It follows from Definitions 5.1, 5.3, 5.5 and Theorems 5.2 and 5.4.
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27. A.P. Šostak, On a fuzzy topological structure, Suppl. Rend. Circ. Mat Palermo Ser.

II, 11 (1985), 89-103.
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