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Abstract.

In this paper we study L-fuzzy proximity spaces, where L represents a completely
distributive lattice.We shall investigate the level decomposition of L-fuzzy proximity
on X and the corresponding L-fuzzy proximity continuous maps. In addition, we shall
establish the representation theorems of L-fuzzy proximity on X.
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1. Introduction

The concept of fuzzy topology was first defined in 1968 by Chang [5] and later re-
defined in a somewhat different way by Lowen [21] and by Hutton [12]. According to
Šostak[28], these definitions, a fuzzy topology is a crisp subfamily of a fmily fuzzy sets
and fuzziness in the concept of openness of a fuzzy set has not been considered, which
appears to be a drawback in the process of fuzzification of the concept of topological
spaces. Therefore, Šostak introduced a new definition of fuzzy topology in 1985 [30],
Later on he developed the theory of fuzzy topological spaces in [29]. After that, several
authors [11, 22, 26, 29] have reintroduced the same definition and studied fuzzy topolog-
ical spaces being unaware of Šostak’s work.Katsaras [13] introduced fuzzy proximity in
[0, 1]-fuzzy set theory. Subsequently Wang-jin Liu [17], Artico and Moresco [1] extended
it into L-fuzzy set theory. F. Bayoumi [4] shows that all initial and final lifts in the
category L-PRI of L-proximity spaces of the internal type and hence all initial and final
L-proximities of the internal type do exist. In the framework of [34] we have introduced
the two papers [7,8] and in the present paper, we study the level decomposition of an
L-fuzzy proximity and the corresponding L-fuzzy proximity continuous maps. In addi-
tion, we also establish some representation theorems for L-fuzzy proximity on X. The
main results of this paper are several representation theorems for L-fuzzy proximity on
X, where L represents a completely distributive lattice. Based on the results of this
paper, we have also developed representation theorems for the category L-FP which
consist of L-fuzzy proximity spaces and L-fuzzy proximity continuous maps.
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2 ON L-FUZZY PROXIMITY SPACES

2. Preliminaries

Throughout this paper, L represents a completely distributive lattice with the small-
est element ⊥ and the greatest element >, where ⊥ 6= >. We define M(L) to be the set
of all non-zero ∨-irreducible (or coprime) elements in L such that a ∈ M(L) iff a ≤ b∨ c
implies a ≤ b or a ≤ c. Let P (L) be the set of all non-unit prime elements in L such
that a ∈ P (L) iff a ≥ b ∧ c implies a ≥ b or a ≥ c. Finally, let X be a non-empty
usual set, and LX be the set of all L-fuzzy sets on X. For each a ∈ L, let a denote a
constant-valued L-fuzzy set with a as its value. Let ⊥ and > be the smallest element
and greatest element in LX , respectively. for the empty set φ ⊂ L, we define ∧φ = >
and ∨φ = ⊥.

Defnition 2.1[32].
Suppose that a ∈ L and A ⊂ L.
(1) A is called a maximal family of a if
(a) inf A = a,
(b) ∀B ⊂ L, inf B ≤ a implies that ∀x ∈ A there exists y ∈ B such that y ≤ x.
(2) A is called a minimal family of a if
(a) sup A = a,
(b) ∀B ⊂ L, sup B ≥ a implies that ∀x ∈ A there exists y ∈ B such that y ≥ x.

Remark 2.2.[12].
Hutton proved that if L is a completely distributive lattice and a ∈ L, then there

exists B ⊂ L such that
(i) a =

∨

B, and
(ii) if A ⊂ L and a =

∨

A, then for each b ∈ B there is a c ∈ A such that b ≤ c.
However, if ∀a ∈ L, and if there exists B ⊂ L satisfying (i) and (ii), then in general L

is not a completely distributive lattice. To this end,Wang [30] introduced the following
modification of condition (ii),

(ii’) if A ⊂ L and a ≤
∨

A, then for each b ∈ B there is a c ∈ A such that b ≤ c.
Wang proved that a complete lattice L is completely distributive if and only if for

each element a ∈ L, there exists B ⊂ L satisfying (i) and (ii). Such a set B is called
a minimal set of a by Wang [31].The concept of maximal family is the dual concept of
minimal family, and a complete lattice L is completely distributive if and only if for
each element a ∈ L, there exists a maximal family B ⊂ L.

Let α(a) denote the union of all maximal families of a. Likewise, let β(a) denote the
union of all minimal sets of a. Finally, let α∗(a) = α(a)∩P (L) and β∗(a) = β(a)∩M(L).
One can easily see that both α(a) and α∗(a) are maximal sets of a. Likewise, both β(a)
and β∗(a) are minimal sets of a. Also, we have α(>) = φ. and β(⊥) = φ.

Definition 2.3 [12].
An L-fuzzy topology on X is a map T : LX → L satisfying the following three

axioms:
(O1) T (>) = >;
(O2) T (λ ∧ ρ) ≥ T (λ) ∧ T (ρ),∀λ, ρ ∈ LX .
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(O3) T (
∨

i∈∆ λi) ≥
∧

i∈∆ T (λi),∀{λi}i∈∆ ⊂ LX .

The pair (X, T ) is called an L-fuzzy topological space. For every λ ∈ LX , T (λ) is
called the degree of openness of the fuzzy subset λ. Just as an L-topology on X is an
ordinary subset of LX , an L-fuzzy topology on X is a fuzzy subset of LX .

Definition 2.4.
Let (X, T1) and (Y,T2) be L-fuzzy topological spaces. A map f : (X, T1) → (Y,T2)

is called L-fuzzy continuous iff

T2(ρ) ≤ T1(f
←(ρ)), ∀ρ ∈ LY .

where f←(ρ) = ρ ◦ f

Definition 2.5. (Artico and Moreseco [1], Katsaras [15], Liu [19]).
An L-proximity on LX is a subfamily of LX ×LX which satisfies, for any λ, ρ, µ, γ ∈

LX , the following conditions:
(P1) (⊥,>) /∈ δ.
(P2) If λ ≤ ρ, (λ, µ) ∈ δ then (ρ, µ) ∈ δ.
(P3) If (λ, ρ) ∈ δ then (ρ, λ) ∈ δ.
(P4) If (λ, ρ ∨ µ) ∈ δ then (λ, ρ) ∈ δ or (λ, µ) ∈ δ

(P5) If (λ, ρ) /∈ δ, there exists γ ∈ LX such that (λ, γ) /∈ δ and (γ
′

, ρ) /∈ δ .

(P6) If (λ, ρ) /∈ δ then λ ≤ ρ
′

As in (Shi [26-28] and Wang [32]) we give the following lemma:

Lemma 2.6.
For a ∈ L and a map δ : LX × LX → L, we define

δ[a] = {(A,B) ∈ LX × LX | δ(A,B) ≥ a}

and
δ[a] = {(A,B) ∈ LX × LX | a /∈ α(δ(A,B))}

Let δ be a map from LX × LX to L and a, b ∈ L. Then
(1) a ∈ β(b) ⇒ δ[b] ⊂ δ[a]; a ∈ α(b) ⇒ δ[a] ⊂ δ[b].
(2) a ≤ b ⇔ β(a) ⊂ β(b) ⇔ β∗(a) ⊂ β∗(b) ⇔ α(b) ⊂ α(a) ⇔ α∗(b) ⊂ α∗(a).
(3) α(

∧

i∈4 ai) =
⋃

i∈4 α(ai) and β(
∨

i∈4 ai) =
⋃

i∈4 β(ai) for any sub-family

{ai}i∈4 ⊂ L

3. Level decomposition of an L-fuzzy proximity

Definition 3.1[18].
A map δ : LX × LX → L is called an L-fuzzy proximity on X if it satisfies the

following conditions:
(FP1) δ(>,⊥) = ⊥,
(FP2) If λ ≤ ρ, then δ(λ, µ) ≤ δ(ρ, µ).
(FP3) δ(λ, ρ) = δ(ρ, λ).
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(FP4) δ(λ, ρ ∨ µ) ≤ δ(λ, ρ) ∨ δ(λ, µ).

(FP5) δ(λ, ρ) ≥
∧

γ∈LX{δ(λ, γ) ∨ δ(γ
′

, ρ)}.

(FP6) If δ(λ, ρ) 6= >, then λ ≤ ρ
′

.
The pair (X, δ) is said to be an L-fuzzy proximity space. Just as an L-proximity on

X is an ordinary subset of LX × LX , an L-fuzzy proximity on X is a fuzzy subset of
LX × LX .

An L-fuzzy proximity space is called principal provided that
(P) δ(

∨

i∈∆ λi, µ) ≤
∨

i∈∆ δ(λi, µ).

Remark 3.2.
(1) If δ : 2X × 2X → I where I = [0, 1] such that the above conditions hold respec-

tively, we call it a fuzzifying proximity(resp. principal fuzzifying proximity) on X in a
sense [33].

(2) We easily show that every L-fuzzy proximity space is a Samanta’s fuzzy proximity
space [25] and Ghanism’s fuzzy proximity space [10].

Theorem 3.3.
Let δ be a map δ : LX × LX → L. Then the following conditions are equivalent:
(1) δ is an L-fuzzy proximity on X.
(2) ∀a ∈ M(L), δ[a] is an L-proximity on X.

(3) ∀a ∈ L, δ[a] is an L-proximity on X.

(4) ∀a ∈ P (L), δ[a] is an L-proximity on X.

proof. (1) ⇒ (2): this part is obvious.
(2) ⇒ (1): (FP1) For each a ∈ M(L), we have (>,⊥) /∈ δ[a], and δ(>,⊥) < a.

Accordingly,

δ(>,⊥) <
∧

{a | a ∈ M(L)} = ⊥.

Thus, δ(>,⊥) = ⊥.
(FP2) Let λ, ρ, µ ∈ LX with λ ≤ ρ. Clearly, when δ(λ, µ) = ⊥, we have δ(λ, µ) ≤

δ(ρ, µ). Otherwise if δ(λ, µ) > ⊥, then for each δ(λ, µ) ≥ a, we have (λ, µ) ∈ δ[a].
Consequently, by (P2), we have (ρ, µ) ∈ δ[a], that is, δ(ρ, µ) ≥ a. This further implies
that

δ(ρ, µ) ≥
∨

{a ∈ M(L) | δ(λ, µ) ≥ a} = δ(λ, µ).

(FP3) Let λ, ρ ∈ LX . For each δ(λ, ρ) ≥ a, we have (λ, ρ) ∈ δ[a]. Consequently
(ρ, λ) ∈ δ[a] or δ(ρ, λ) ≥ a. This further implies that

δ(ρ, λ) ≥
∨

{a ∈ M(L) | δ(λ, ρ) ≥ a} = δ(λ, ρ).

The opposite inequality follows, by interchanging λ and ρ.
(FP4)Let λ, ρ, µ ∈ LX . Clearly, when δ(λ, ρ∨µ) = ⊥, we have δ(λ, ρ∨µ) ≤ δ(λ, ρ)∨

δ(λ, µ). Otherwise if δ(λ, ρ∨µ) > ⊥,then for each δ(λ, ρ∨µ) ≥ a, we have (λ, ρ∨µ) ∈ δ[a].
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Consequently, we have (λ, ρ) ∈ δ[a] or (λ, µ) ∈ δ[a] and so δ(λ, ρ) ≥ a or δ(λ, µ) ≥ a
hence δ(λ, ρ) ∨ δ(λ, µ) ≥ a. This further implies that

δ(λ, ρ) ∨ δ(λ, µ) ≥
∨

{a ∈ M(L) | a ≤ δ(λ, ρ ∨ µ)} = δ(λ, ρ ∨ µ).

(FP5) Let λ, ρ, γ ∈ LX .Clearly, when
∧

γ∈LX

{

δ(λ, γ) ∨ δ(γ
′

, ρ)
}

= ⊥, we have

δ(λ, ρ) ≥
∧

γ∈LX

{

δ(λ, γ) ∨ δ(γ
′

, ρ)
}

. Otherwise if
∧

γ∈LX

{

δ(λ, γ) ∨ δ(γ
′

, ρ)
}

> ⊥,
Then for each

∧

γ∈LX

{

δ(λ, γ) ∨ δ(γ
′

, ρ)
}

≥ a.

Then for all γ ∈ LX where δ(λ, γ)∨ δ(γ
′

, ρ) ≥ a . Consequently, we have for all γ ∈ LX

where δ(λ, γ) ≥ a or δ(γ
′

, ρ) ≥ a implies for all γ ∈ LX , (λ, γ) ∈ δ[a] or (γ
′

, ρ) ∈ δ[a]

and so (λ, ρ) ∈ δ[a] or δ(λ, ρ) ≥ a . This further implies that

δ(λ, ρ) ≥
∨

{

a ∈ M(L) |
∧

γ∈LX

{

δ(λ, γ) ∨ δ(γ
′

, ρ)
}

≥ a
}

=
∧

γ∈LX

{

δ(λ, γ) ∨ δ(γ
′

, ρ).

Thus, δ(λ, ρ) ≥
∧

γ∈LX

{

δ(λ, γ) ∨ δ(γ
′

, ρ).

(FP6)Clearly from (P6).

(1) ⇒ (3): (P1) Since δ(>,⊥) = ⊥, clearly for each a ∈ L, we have a ∈ α(δ(>,⊥)).
Thus (>,⊥) /∈ δ[a].

(P2)Consider λ ≤ ρ and (λ, µ) ∈ δ[a] then a /∈ α(δ(λ, µ)) ⊃ α(δ(ρ, µ)) and so (ρ, µ) ∈
δ[a].

(P3) For all λ, ρ ∈ LX , let (λ, ρ) ∈ δ[a]. Hence a /∈ α(δ(λ, ρ)) = α(δ(ρ, λ)). Further-
more, since a /∈ α(δ(ρ, λ)), we have (ρ, λ) ∈ δ[a].

(P4)For all λ, ρ, µ ∈ LX , let (λ, ρ∨µ) ∈ δ[a]. We have a /∈ α(δ(λ, ρ∨µ)) ⊃ α(δ(λ, ρ)∨
δ(λ, µ)) hence either δ(λ, ρ) ≤ δ(λ, µ) then a /∈ α(δ(λ, µ)) and so (λ, µ) ∈ δ[a] or δ(λ, ρ) ≥
δ(λ, µ) then a /∈ α(δ(λ, ρ)) and so (λ, ρ) ∈ δ[a] and its clearly if δ(λ, ρ) = δ(λ, µ).

(P5) For all γ ∈ LX with (λ, γ) ∈ δ[a] or (γ
′

, ρ) ∈ δ[a], we have a /∈ α(δ(λ, ρ)) or

a /∈ α(δ(γ
′

, ρ). Then

a /∈ α(δ(λ, ρ)) ∪ α(δ(γ
′

, ρ)) = α(δ(λ, ρ)) ∧ α(δ(γ
′

, ρ) ⊃ α(δ(λ, ρ)) ∨ α(δ(γ
′

, ρ)).

Hence

a /∈
⋃

γ∈LX

α(δ(λ, ρ) ∨ δ(γ
′

, ρ)) = α(
∧

γ∈LX

(δ(λ, ρ) ∨ δ(γ
′

, ρ)) ⊃ α(δ(λ, ρ)).

Then (λ, ρ) ∈ δ[a].

(P6) Consider λ 6≤ ρ
′

, we have δ(λ, ρ) = >. Then α(δ(λ, ρ) = α(>) = φ. Hence
a /∈ α(δ(λ, ρ)). Thus (λ, ρ) ∈ δ[a].
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(3) ⇒ (4): this part is obvious.

(4) ⇒ (1): (FP1) Since (⊥,>) /∈ δ[⊥]. Thus ⊥ ∈ α(δ(⊥,>)). Then

δ(⊥,>) =
∧

α∗(δ(⊥,>)) = ⊥.

(FP2) Let λ, ρ, µ ∈ LX with λ ≤ ρ. Clearly, when δ(λ, µ) = ⊥, we have δ(λ, µ) ≤
δ(ρ, µ). Otherwise if δ(λ, µ) > ⊥, then for each a ∈ P (L) and a /∈ α(δ(λ, µ)), we have
(λ, µ) ∈ δ[a]. Consequently, we have (ρ, µ) ∈ δ[a] or a /∈ α(δ(ρ, µ)). Accordingly, we
have

α∗(δ(λ, µ)) ⊃ α∗(δ(ρ, µ)) or δ(λ, µ) ≤ δ(ρ, µ).

(FP3) Let λ, ρ ∈ LX . For each a ∈ P (L) and a /∈ α(δ(λ, ρ)), we have (λ, ρ) ∈ δ[a].
Consequently (ρ, λ) ∈ δ[a], we have a /∈ α(δ(ρ, λ)). Accordingly, we have

α∗(δ(λ, ρ)) ⊃ α∗(δ(ρ, λ)) or δ(λ, ρ) ≤ δ(ρ, λ).

The opposite inequality follows, by interchanging λ and ρ.
(FP4) Let λ, ρ, µ ∈ LX . Clearly, when δ(λ, ρ ∨ µ) = ⊥, we have δ(λ, ρ) ∨ δ(λ, µ) ≥

δ(λ, ρ∨µ). Otherwise if δ(λ, ρ∨µ) > ⊥, then for each a ∈ P (L) and a /∈ α(δ(λ, ρ∨µ)),
we have (λ, ρ ∨ µ) ∈ δ[a], and so (λ, ρ) ∈ δ[a] or (λ, µ) ∈ δ[a]. Consequently, we have

a /∈ α(δ(λ, ρ) ∪ α(δ(λ, µ) = α((δ(λ, ρ) ∧ (δ(λ, µ)) ⊃ α((δ(λ, ρ) ∨ (δ(λ, µ))

. Accordingly, we have

α∗(δ(λ, ρ ∨ µ) ⊃ α∗(δ(λ, ρ) ∨ (δ(λ, µ)) or δ(λ, ρ ∨ µ) ≤ δ(λ, ρ) ∨ δ(λ, µ)

(FP5) Let λ, ρ, γ ∈ LX . Clearly, when δ(λ, ρ) = ⊥, we have δ(λ, ρ) ≥
∧

γ∈LX

{

δ(λ, γ)∨

δ(γ
′

, ρ)
}

. Otherwise if δ(λ, ρ) > ⊥, then for each a ∈ P (L) and a /∈ α(δ(λ, ρ)) Hence

(λ, ρ) ∈ δ[a] . Consequently, there exsits γ ∈ LX where (λ, γ) ∈ δ[a] and (γ
′

, ρ) ∈ δ[a]

implies a /∈
⋃

γ∈LX (α(δ(λ, γ) ∨ δ(γ
′

, ρ)) = α(
∧

γ∈LX (δ(λ, γ) ∨ δ(γ
′

, ρ)) Accordingly, we
have

α∗(δ(λ, ρ)) ⊃ α∗(
∧

γ∈LX

(δ(λ, γ) ∨ δ(γ
′

, ρ))

or
δ(λ, ρ) ≤

∧

γ∈LX

(δ(λ, γ) ∨ δ(γ
′

, ρ))

.
(FP6)Clearly from (P6).

We can now state the following decomposition theorem of L-fuzzy proximity. The
proof is straightforward and therefore omitted.
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Theorem 3.4..
Let δ be an L-fuzzy proximity on X. Then

δ =
∨

a∈L

(a ∧ δ[a]) =
∨

a∈M(L)

(a ∧ δ[a]) =
∧

a∈L

(a ∨ δ[a]) =
∧

a∈P(L)

(a ∨ δ[a])

Corollary 3.5..
Let δ1 and δ2 be L-fuzzy proximities on X, then the following conditions are equiva-

lent:
(1) δ1 = δ2.
(2) ∀a ∈ L, δ1[a]

= δ2[a]
.

(3) ∀a ∈ M(L), δ1[a]
= δ2[a]

.

(4) ∀a ∈ L, δ
[a]
1 = δ

[a]
2 .

(5) ∀a ∈ P (L), δ
[a]
1 = δ

[a]
2 .

Theorem 3.6.
Let δ be an L-fuzzy proximity on X, then
(1) a ∈ L, δ[a] =

⋂

b∈β(a) δ[b].

(2) ∀a ∈ M(L), δ[a] =
⋂

b∈β∗(a) δ[b].

(3) a ∈ L, δ[a] =
⋂

a∈α(b) δ[b].

(4) ∀a ∈ P (L), δ[a] =
⋂

a∈α∗(a),b∈P(L) δ[b].

Proof.
(1)By Lemma 2.7, we have that ∀a ∈ L, δ[a] ⊂

⋂

b∈β(a) δ[b]. To show that δ[a] ⊃
⋂

b∈β(a) δ[b], we take (λ, ρ) ∈ LX × LX and (λ, ρ) ∈
⋂

b∈β(a) δ[b]. Notice that ∀b ∈

β(a), δ(λ, ρ) ≥ b. Hence δ(λ, ρ) ≥
∨

{

b | b ∈ β(a)
}

= a, which implies that (λ, ρ) ∈ δ[a].
(2) The proof is similar to (1).

(3)By Lemma 2.7, we have that ∀a ∈ L, δ[a] ⊂
⋂

a∈α(b) δ[b]. To show that δ[a] ⊃
⋃

a∈α(b) δ
[b], we take (λ, ρ) ∈ LX ×LX and (λ, ρ) ∈

⋃

a∈α(b) δ[b]. Notice that ∀b ∈ L and

a ∈ α(b), it follows that b /∈ α(δ(λ, ρ)). We prove by contradiction as follows. Suppose
that a ∈ α(δ(λ, ρ)). Notice that δ(λ, ρ) =

∧
{

b | b ∈ α(δ(λ, ρ))
}

and α(δ(λ, ρ)) =
⋃

{

α(b) | b ∈ α(δ(λ, ρ))
}

. There must exist b ∈ α(δ(λ, ρ)) such that a ∈ α(b). But this
is impossible.

(4) The proof is similar to (3).

Remark 3.7.
(1) b ∈ β(a) implies b � a, where b � is way-below relation [6], i.e. b � a if and

only if for every up-directed set S in L,
∨

S ≥ a implies that there exists s ∈ S such
that s ≥ b;

(2) If a ∈ M(L), then b ∈ β∗(a) if and only if b � a.
(3) ∀a ∈ M(L), δ[a] =

⋂

b∈β∗ δ[b] ⇔ δ[a] =
⋂

b�a,b∈M(L) δ[b].
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Proof.
(1) Since β(a) is a minimal set of a, from Definition 2.1, we have that for every

up-directed set S in L, if
∨

S ≥ a, then ∀b ∈ β(a) there exists s ∈ S such that s ≥ b. It
follows that b � a.

(2) Let a ∈ M(L) and b � a. From Theorems 1.3.6 and 1.3.8 in [15] and Definition
2.1, we know that β∗(a) is both an up-directed set and a lower set, and

∨

β∗(a) = a.

Hence, there exists b
′

∈ β∗(a) such that a ≥ b
′

≥ b. In other words, b ∈ β∗(a).
Conversely, if b ∈ β∗(a), then since β∗(a) ⊂ β(a) and b ∈ β∗(a) implies b ∈ β(a). It
follows that b � a.

(3) It is obvious.

Theorem 3.8.
Let

{

δ[a] | a ∈ M(L)
}

be a family of L-proximities on X. Then the following
conditions are equivalent:

(1) There exists an L-fuzzy proximity δ on X such that δ[a] = δa for each a ∈ M(L).
(2) ∀a ∈ M(L), δa =

⋂

b∈β∗(a) δb.

Proof. (1) ⇒ (2): This holds because of Theorem 3.5.
(2) ⇒ (1): Let δ =

∨

a∈M(L)(a ∧ δa). Obviously, we have δa ⊂ δ[a]. For any

(λ, ρ) ∈ δ[a], we have δ(λ, ρ) ≥ a and
∨

{

b ∈ M(L) | (λ, ρ) ∈ δb

}

≥ a. Next, since β∗(a)

is a minimal family of a, for each b ∈ β∗(a), there exists b
′

∈ M(L) such that b ≥ b
′

and (λ, ρ) ∈ δb
′ ⊂ δb. Therefore,

⋂

b∈β∗(a) δb = δa.

Similarly, we can state the following theorems.

Theorem 3.9. Let
{

δa | a ∈ P (L)
}

be a family of L-proximities on X. Then the
following conditions are equivalent:

(1) There exists an L-fuzzy proximity δ on X such that δ[a] = δa for each a ∈ P (L).
(2) ∀a ∈ P (L), δa =

⋂

a∈α∗(b) δb.

Theorem 3.10. Let
{

δa | a ∈ L
}

be a family of L-proximities on X. Then the
following conditions are equivalent:

(1) There exists an L-fuzzy proximity δ on X such that δ[a] = δa for each a ∈ L.
(2) ∀a ∈ L, δa =

⋂

b∈β(a) δb.

Theorem 3.11. Let
{

δa | a ∈ L
}

be a family of L-proximities on X. Then the
following conditions are equivalent:

(1) There exists an L-fuzzy proximity δ on X such that δ[a] = δa for each a ∈ L.
(2) ∀a ∈ L, δa =

⋂

a∈α(b) δb.

4. Representation theorems of L-fuzzy proximities

Let LP [X] denote the family of all L-proximities on X. Let LFP [X] denote the
family of all L-fuzzy proximities on X. The order relation on LFP [X] is defined as
follow:

∀δ1, δ2 ∈ LFP [X], δ1 � δ2 ⇔ ∀(λ, ρ) ∈ LX × LX , δ1(λ, ρ) ≤ δ2(λ, ρ).
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Theorem 4.1.
(LFP [X],�) is a complete lattice. In fact, it is a complete sub-meet-semilattice of

LLX×LX

, i.e. closed under the ∧ of LLX×LX

.

Proof. Let X be a set. Define two maps δ : LX × LX → L as follows:

δ0(λ, ρ) =

{

⊥, if λ = ⊥ or ρ = ⊥,

>, otherwise,

δ1(λ, ρ) =

{

⊥, if λ ≤ ρ
′

,

>, otherwise.

Clearly, we have δ0, δ1 ∈ LFP [X], and they are the smallest element and the greatest
element in (LFP [X],�L), respectively. Next, let

{

δi | i ∈ ∆
}

⊂ LFP [X] and δ =
∧�L

i∈∆ δi. Obvious δ ∈ LFP [X]. Accordingly, (LFP [X],�) is a complete lattice.

To facilitate further illustration, let us define the following classes:

UL[X] =
{

F : L → LP [X] | ∀a ∈ L,F (a) = ∩a∈α(b)F (b)
}

UL[X] =
{

F : L → LP [X] | ∀a ∈ L,F (a) = ∩b∈β(a)F (a)
}

UM(L)[X] =
{

F : M(L) → LP [X] | ∀a ∈ M(L), F (a) = ∩b∈β∗(a)F (b)
}

UP(L)[X] =
{

F : P (L) → LP [X] | ∀a ∈ P (L), F (a) = ∩a∈α∗(b)F (b)
}

In addition, let us define the following order relations within the classes UL[X],
UL[X],UM(L)[X] and UP(L)[X]:

F1, F2 ∈ UL[X], F1 �L F2 ⇔ ∀a ∈ L,F1(a) ⊂ F2(a)

F1, F2 ∈ UL[X], F1 �L F2 ⇔ ∀a ∈ L,F1(a) ⊂ F2(a)

F1, F2 ∈ UM(L)[X], F1 �M(L) F2 ⇔ ∀a ∈ M(L), F1(a) ⊂ F2(a)

F1, F2 ∈ UP(L)[X], F1 �P(L) F2 ⇔ ∀a ∈ P (L), F1(a) ⊂ F2(a)
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Theorem 4.2.
(UL[X],�L), (UL[X],�L), (UM(L)[X],�M(L)) and (UP(L)[X],�P(L)) are complete

lattices. Obviously, UL[X],�L) and UL[X],�L) are complete sub-meet-semilattices of
the lattice (LP [X])L (i.e., closed under the ∧ of (LP [X])L, when

{

Fi | i ∈ ∆
}

⊂ UL[X],

F =
∧�L

i∈∆ Fi be defined as ∀a ∈ L,F (a) =
⋂

i ∈ ∆Fi(a), (UM(L)[X],�M(L)) is a

complete sub-meet-semilattices of the lattice (LP [X])M(L), and (UP(L)[X]),�p(L)) is a

complete sub-meet-semilattices of the lattice (LP [X])P(L).

Proof. ∀a ∈ L, let us define F⊥(a) =
{

(λ, ρ) | λ 6= ⊥, ρ 6= ⊥
}

and F>(a) =
{

(λ, ρ) |

λ 6≤ ρ
′
}

. Clearly, we have F⊥(a), F>(a) ∈ UL[X], and they are the smallest element

and the greatest element in (UL[X],�L), respectively. Next, let
{

Fi | i ∈ ∆
}

⊂ UL[X]

and F =
∧�L

i∈∆ Fi. Since

F (a) =
⋂

i∈∆

Fi(a) =
⋂

i∈∆

⋂

a∈α(b)

Fi(b) =
⋂

a∈α(b)

⋂

i∈∆

Fi(b) =
⋂

a∈α(b)

F (b),

it follows that F ∈ UL[X]. Accordingly, (UL[X],�L) is a complete lattice. The same
argument can be used to prove the rest of the theorem.

The following representation theorem of L-fuzzy proximity follows naturally.

Theorem 4.3.
The map f : LFP [X] → UL[X], δ 7→ Fδ (for every a ∈ L and Fδ(a) = δ[a] is

an isomorphism in the category of complete meet-semilattices and f← : UL[X] →
LFP [X], F 7→ δF =

∧

a∈L(a ∨ F (a)).

Proof.
For each δ ∈ LPT [X], it is easy to verify that

Fδ(a) = δ[a] =
⋂

a∈α(b)

δ[b] =
⋂

a∈α(b)

Fδ(b)

Hence, Fδ ∈ UL[X]. Next, by Theorems 3.3, 3.4 and Corollary 3.5, it suffices to show
that f is an injection. Since (λ, ρ) /∈ (δF )[c] iff

α((δF (λ, ρ)) =
⋃

a∈L

α((a ∨ F (a))((λ, ρ)) =
⋃

{

α(a) | a ∈ L, (λ, ρ) /∈ F (a)
}

iff there exists a ∈ L such that c ∈ α(a) and (λ, ρ) /∈ F (a) iff (λ, ρ) /∈
⋂

c∈α(a) F (a) =

F (c), we have FδF
(c) = δ

[c]
F = F (c). This shows that FδF

= F . It follows that f is a
surjection as well as a bijection, and

f← : UL[X] → LFP [X], F 7→ δF =
∧

a∈L

(a ∨ F (a))
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Next, let δ1, δ2 ∈ LFP [X] and
{

δi | i ∈ ∆
}

⊂ LFP [X]. Then it is straightforward to

show that f(δ1) �
L f(δ2) when δ1 � δ2. Hence f(

∧

i∈∆ δi) =
∧�L

i∈∆ f(δi) and the proof
is complete.

The following Theorem follows directly from the above proof.

Theorem 4.4.
The map f : LFP [X] → UP(L)[X], δ 7→ Fδ (for every a ∈ P (L) and Fδ(a) = δ[a] is

an isomorphism in the category of complete meet-semilattices and f← : UP(L)[X] →
LFP [X], F 7→ δF =

∧

a∈P(L)(a ∨ F (a)).

Theorem 4.5.
The map f : LFP [X] → UL[X], δ 7→ Fδ (for every a ∈ L and Fδ(a) = δ[a] is

an isomorphism in the category of complete meet-semilattices and f← : UL[X] →
LFP [X], F 7→ δF =

∧

a∈L(a ∨ F (a)).

Proof.
For each δ ∈ LPT [X], it is easy to verify that

Fδ(a) = δ[a] =
⋂

b∈β(a)

δ[b] =
⋂

b∈β(a)

Fδ(b)

Hence, Fδ ∈ UL[X]. Next, by Theorems 3.4 and Corollary 3.5, it suffices to show
that f is an injection. It is proved easily that (λ, ρ) ∈ (δF )[c] iff

δF ((λ, ρ)) =
∨

a∈L

(a ∧ F (a))((λ, ρ)) =
∨

{

a | (λ, ρ) ∈ F (a)
}

≥ c

iff (because of Lemma 2.7)
⋃

(λ,ρ)∈F (a)

β(a) = β(
∨

{

a | (λ, ρ) ∈ F (a)
}

) ⊃ β(c)

On the other hand, we can prove

(λ, ρ) ∈ F (c) =
⋂

a∈β(α)

F (a) ⇔ ∀a ∈ β(α), (λ, ρ) ∈ F (a) ⇔
⋃

(λ,ρ)∈F (a)

β(a) ⊃ β(c)

Clearly, ∀a ∈ β(α), (λ, ρ) ∈ F (a) ⇒
⋃

(λ,ρ)∈F (a) β(a) ⊃
⋃

a∈β(c) = β(c). Conversely,

for each d ∈ β(c) ⊂
⋃

(λ,ρ)∈F (a) β(a), then there exists a ∈ L such that d ∈ β(a)

and (λ, ρ) ∈ F (a) =
⋂

b∈β(a) F (b). It show that (λ, ρ) ∈ F (d). So, we conclude that

(λ, ρ) ∈ (δF )[c] ⇔ (λ, ρ) ∈ F (c), i.e., FδF
(c) = (δF )[c] = F (c). This shows that FδF

= F .
It follows that f is a surjection as well as a bijection, and

f← : UL[X] → LFP [X], F 7→ δF =
∨

a∈L

(a ∧ F (a))

Next, let δ1, δ2 ∈ LFP [X] and
{

δi | i ∈ ∆
}

⊂ LFP [X]. Then it is straightforward to

show that f(δ1) �
L f(δ2) when δ1 � δ2. Hence f(

∧

i∈∆ δi) =
∧�

L

i∈∆ f(δi) and the proof
is complete.

The following Theorem follows directly from the above proof.
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Theorem 4.6.
The map f : LFP [X] → UM(L)[X], δ 7→ Fδ (for every a ∈ M(L) and Fδ(a) = δ[a] is

an isomorphism in the category of complete meet-semilattices and f← : UM(L)[X] →
LFP [X], F 7→ δF =

∨

a∈M(L)(a ∧ F (a)).

5. L-fuzzy continuous proximity maps

Definition 5.1.
Let (X, δ1) and (Y, δ2) be two L-fuzzy proximity spaces. Let f : X → Y be a

map. f : (X, δ1) → (Y, δ2) is called L-fuzzy proximity continuous map if for every
(λ, ρ) ∈ LY × LY we have

δ1(f
←(λ), f←(ρ)) ≥ δ2(λ, ρ),

where f←(λ) = λ ◦ f .

From Definition 5.1, obviously, f : (X, δ1) → (Y, δ2) is an L-fuzzy proximity contin-
uous if and only if ∀a ∈ M(L), f : (X, δ1[a]

) → (Y, δ2[a]
) is an L-proximity continuous

map.
Excepting this, we have the followings equivalent conditions:

Theorem 5.2.
Let (X, δ1) and (Y, δ2) be L-fuzzy proximity spaces and f : X → Y be a map. Then

the following conditions are equivalent:
(1) f : (X, δ1) → (Y, δ2) is an L-fuzzy proximity continuous map.
(2) ∀a ∈ M(L), f : (X, δ1[a]

) → (Y, δ2[a]
) is an L-proximity continuous map.

(3) ∀a ∈ L, f : (X, δ
[a]
1 ) → (Y, δ

[a]
2 ) is an L-proximity continuous map.

(4) ∀a ∈ P (L), f : (X, δ
[a]
1 ) → (Y, δ

[a]
2 ) is an L-proximity continuous map.

Proof. (1) ⇒ (2): This part is obvious.
(2) ⇒ (1): ∀(λ, ρ) ∈ LY ×LY , a ∈ M(L) such that a ≤ δ2(λ, ρ), we have (λ, ρ) ∈ δ2[a]

and (f←(λ), f←(ρ)) ∈ δ1[a]
by the continuity of f : (X, δ1[a]

) → (Y, δ2[a]
). Accordingly,

δ1(f
←(λ), f←(ρ)) ≥ a for each ∀a ∈ M(L) ∩ M(δ2(λ, ρ)), where M(δ2(λ, ρ)) =

{

a ∈

M(L) | a ≤ δ2(λ, ρ)
}

. It follows that δ1(f
←(λ), f←(ρ)) ≥

∨

M(δ2(λ, ρ)) = δ2(λ, ρ).

(1) ⇒ (3): ∀(λ, ρ) ∈ LY × LY , since δ1(f
←(λ), f←(ρ)) ≥ δ2(λ, ρ), it follows from

Lemma 2.7 that a /∈ α(δ1(f
←(λ), f←(ρ))) when ∀a ∈ L, if a /∈ α(δ2(λ, ρ)). In other

words, if (λ, ρ) ∈ δ
[a]
2 , then (f←(λ), f←(ρ)) ∈ δ

[a]
1 . Thus f : (X, δ

[a]
1 ) → (Y, δ

[a]
2 ) is a

fuzzy proximity continuous map.
(3) ⇒ (4): This is obvious. (4) ⇒ (1): For ∀a ∈ P (L) and (λ, ρ) ∈ LY ×

LY , if a /∈ α(δ2(λ, ρ), then (λ, ρ) ∈ δ
[a]
2 . Thus (f←(λ), f←(ρ)) ∈ δ

[a]
1 by the con-

tinuity of f : (X, δ
[a]
1 ) → (Y, δ

[a]
2 ). In other words, a /∈ α(δ1(f

←(λ), f←(ρ))) and
α∗(δ1(f

←(λ), f←(ρ))) ⊂ α∗(δ2(λ, ρ)). It follows from Lemma 2.7 that

δ1(f
←(λ), f←(ρ)) ≥ δ2(λ, ρ)

Hence the proof is completed.
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Definition 5.3.
Let (X, δ1) and (Y, δ2) be two L-fuzzy proximity spaces. Let f : X → Y be a map.

f : (X, δ1) → (Y, δ2) is called an L-fuzzy proximity homeomorphism if f is bijective and
f and f← are L-fuzzy continuous maps.

Theorem 5.4.
Let (X, δ1) and (Y, δ2) be L-fuzzy proximity spaces and f : X → Y be a bijective

map. Then the following conditions are equivalent:
(1) f : (X, δ1) → (Y, δ2) is an L-fuzzy proximity homeomorphism .
(2) ∀a ∈ M(L), f : (X, δ1[a]

) → (Y, δ2[a]
) is an L-proximity homeomorphism .

(3) ∀a ∈ L, f : (X, δ
[a]
1 ) → (Y, δ

[a]
2 ) is an L-proximity homeomorphism .

(4) ∀a ∈ P (L), f : (X, δ
[a]
1 ) → (Y, δ

[a]
2 ) is an L-proximity homeomorphism .

Proof. It follows from Definitions 5.1, 5.3 and Theorems 5.2 .
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11. U.Höhle and A. Šostak, Axiomatic Foundations of Fixed-Basis fuzzy topology, The Handbooks of

Fuzzy sets series, Volume 3, Kluwer Academic Publishers, Dordrecht (1999).

12. B. Hutton, Normality in fuzzy topological spaces, J. Math. Anal. Appl 50 (1975), 74-79.

13. A. K. Katsaras, Fuzzy proximity spaces, J. Math. Anal. Appl. 68 (1979), 100-110.
14. A. K. Katsaras, On fuzzy proximity spaces, J. Math. Anal. Appl. 75 (1980), 571-583.

15. A. K. Katsaras, Fuzzy proximities and fuzzy completely regular spaces, J.Anal. St. Univ. Jasi. 26

(1980), 31-41.

16. A. K. Katsaras, Fuzzy quasi-proximities and fuzzy quasi-uniformities, Fuzzy Sets and Systems 27

(1988), 335-343.

17. Khaled A. Hashem and Nehad N. Morsi, Fuzzy T-neighbourhood spaces: Part 1T-proximities,
Fuzzy Sets and Systems 127 (2002), 247-264.

18. Y. C. Kim, K. C. Min, L-fuzzy pre-proximities and L-fuzzy topologies, Information Sciences 173

(2005), 93-113.

19. W.-J. Liu, Fuzzy proximity spaces redefined, Fuzzy Sets and Systems 15 (1985), 241-248.

20. Y.M. Liu, M.K. Luo, Fuzzy Topology, World Scientific Publishing, Singapore (1999).
21. R. Lowen, Fuzzy topological spaces and fuzzy compactness, Math. Anal. Appl. 56 (1976), 621-633.



14 ON L-FUZZY PROXIMITY SPACES

22. A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371-375.

23. A. A. Ramadan, M. El- Dardery, Smooth grills and a characterizations of smooth proximity, Fuzzy
Math. 10 (2002), 1106-1120.

24. A. A. Ramadan, M. El- Dardery and Y. C. Kim, On fuzzy syntopogenous structures, Fuzzy Math.

11 (2003), 769-790.

25. S. K.Samanta, Fuzzy proximities and fuzzy uniformities, Fuzzy Sets and Systems 70 (1995), 97-105.

26. F.G. Shi, Theory of L-nested sets and L-nested sets and its applications, Fuzzy Systems Math. 4

(1995), 63-72.
27. F.G. Shi, L-fuzzy sets and prime element nested sets, J. Math. Res. Exposition 16 (1996), 398-402.

28. F.G. Shi, Theory of molecular nested sets and its applications, J.Yantai Teachers Univ 1 (1996),

33-36.

29. R. Srivastava, On separation axioms in a newly defined fuzzy topology, Fuzzy sets and systems 62

(1994), 341-346.
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