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We introduce two new subclasses of biunivalent functions which are defined by using the Dziok-Srivastava operator. Furthermore,
we find estimates on the coefficients |𝑎

2
| and |𝑎

3
| for functions in these new subclasses.

1. Introduction

Let 𝐴 denote the class of all functions of the form

𝑓 (𝑧) = 𝑧 +

∞

∑
𝑛=2

𝑎
𝑛
𝑧
𝑛
, (1)

which are analytic in the open unit disc 𝑈 = {𝑧 ∈ C : |𝑧| <

1}. Also let 𝑆 denote the class of all functions in 𝐴 which are
univalent in 𝑈.

Some of the important andwell-investigated subclasses of
the univalent function class 𝑆 include, for example, the class
𝑆
∗
(𝛽) of starlike functions of order 𝛽 in 𝑈 and the class𝐾(𝛽)

of convex functions of order 𝛽 in 𝑈. By definition, we have

𝑆
∗
(𝛼) = {𝑓 ∈ 𝑆 : Re(

𝑧𝑓

(𝑧)

𝑓 (𝑧)
) > 𝛽,

0 ≤ 𝛽 < 1, 𝑧 ∈ 𝑈} ,

𝐾 (𝛼) = {𝑓 ∈ 𝑆 : Re(1 +
𝑧𝑓

(𝑧)

𝑓 (𝑧)
) > 𝛽,

0 ≤ 𝛽 < 1, 𝑧 ∈ 𝑈} .

(2)

Ding et al. [1] introduced the following class 𝑄
𝜆
(𝛽) of

analytic functions defined as follows:

𝑄
𝜆
(𝛽) = {𝑓 ∈ 𝐴 : Re((1 − 𝜆)

𝑓 (𝑧)

𝑧
+ 𝜆𝑓

(𝑧)) > 𝛽,

0 ≤ 𝛽 < 1, 𝜆 ≥ 0} .

(3)

It is easy to see that 𝑄
𝜆
1

(𝛽) ⊂ 𝑄
𝜆
2

(𝛽) for 𝜆
1
> 𝜆
2
≥ 0.

Thus, for 𝜆 ≥ 1, 0 ≤ 𝛽 < 1, 𝑄
𝜆
(𝛽) ⊂ 𝑄

1
(𝛽) = {𝑓 ∈ 𝐴 :

Re𝑓 (𝑧) > 𝛽, 0 ≤ 𝛽 < 1} and hence 𝑄
𝜆
(𝛽) is univalent class

(see [2–4]).
It is well known that every function 𝑓 ∈ 𝑆 has an inverse

𝑓
−1, defined by

𝑓
−1

(𝑓 (𝑧)) = 𝑧 (𝑧 ∈ 𝑈) ,

𝑓 (𝑓
−1

(𝑤)) = 𝑤 (|𝑤| < 𝑟
0
(𝑓) ; 𝑟

0
(𝑓) ≥

1

4
) ,

(4)

where

𝑓
−1

(𝑤) = 𝑤 − 𝑎
2
𝑤
2
+ (2𝑎
2

2
− 𝑎
3
)𝑤
3

− (5𝑎
3

2
− 5𝑎
2
𝑎
3
+ 𝑎
4
)𝑤
4
+ ⋅ ⋅ ⋅ .

(5)

A function 𝑓 ∈ 𝐴 is said to be bi-univalent in 𝑈 if both
𝑓(𝑧) and 𝑓

−1
(𝑧) are univalent in 𝑈. Let Σ denote the class of


